
1 Introduction & Requirements
This application is to develop a firmware on LPC802 MCU, enabling an I2C
slave bus communication bridge to SPI master and GPIO control function as
the SC18IS602B chip.

The SC18IS602B is designed to serve as an interface between a standard
I2C-bus of a microcontroller and an SPI bus. It allows the microcontroller to
directly communicate with SPI devices through its I2C-bus. The SC18IS602B
operates as an I2C-bus slave-transmitter or slave-receiver and an SPI master.
The SC18IS602B controls all the SPI bus-specific sequences, protocol, and
timing. The SC18IS602B has its own internal oscillator, and it supports four SPI
chip select outputs that may be configured as GPIO when not used.

• I2C-bus slave interface operating up to 400 kHz

• SPI master operating up to 1.8 Mbit/s

• 200-byte data buffer

• Up to four slave select outputs

• Up to four programmable I/O pins, shared with SPI slave select output pins

• Operating supply voltage: 2.4 V to 3.6 V

• Low power mode

• Internal oscillator option, without external oscillators

• Active LOW interrupt output

• ESD protection exceeds 2000 V HBM per JESD22-A114, 200 V MM per JESD22-A115, and 1000 V CDM per JESD22-
C101

• Latch-up testing is done to JEDEC Standard JESD78 that exceeds 100 mA

• Very small 16-pin TSSOP

Contents

1 Introduction & Requirements...........1
2 Hardware setup...............................2
3 Software enablement...................... 3
3.1 Enable the interrupt-based SPI

master transfer.............................3
3.2 Enable the interrupt-based I2C

slave transfer............................... 4
3.3 Enable the command dispatcher in

callback for I2C slave transfer...... 5
3.4 Enable the I2C Master driver on the

test machine.................................6
3.5 Enable a command shell on the test

machine....................................... 7
4 Run the demo..................................8

AN13059
Enable I2C Slave Bus Communication Bridge to SPI Master based
on LPC802 MCU
Rev. 0 — 11/2020 Application Note

https://www.nxp.com/products/peripherals-and-logic/signal-chain/bridges/ic-bus-to-spi-bridge:SC18IS602B

MOSI

SC18IS602B

002aac443

I2C-BUS

INTERRUPT
CONTROL

LOGIC
INT

CONTROL
REGISTER

SCL

RESET

SDA
BUFFER

SPI

MISO
SPICLK
SS0
SS1
SS2
SS3

(1)

INTERNAL
OSCILLATOR

Figure 1. SC18IS602B block diagram

In the development based on the LPC802, I used two LPCXpresso802 boards, as described in OM40000. The on-board part was
LPC802M001JDH20, which had an Arm® Cortex®-M0+ core at 15 MHz, 16 KB FLASH and 2 KB SRAM, with TSSOP16 package.
Even this application coould not make the LPC802 working as SC18IS602B pin to pin the same, as the power pin and the reset
pin were not in the same position. The most function would be compatible. Table 1 summarizes the commands supported by
SC18IS602B and the difference between the LPC802 and SC18IS602B.

Table 1. SC18IS602B commands and LPC802's implementation

SC18IS602B command LPC802 implementation

SPI write - Function ID 01h to 0Fh Fully support

SPI read Fully support

Configure SPI interface - Function ID F0h Fully support

Clear interrupt - Function ID F1h Fully support

Idle mode - Function ID F2h Fully support

GPIO write - Function ID F4h Fully support

GPIO read - Function ID F5h Fully support

GPIO enable - Function ID F6h Fully support

GPIO Configuration - Function ID F7h Not supporting the quasi-bidirectional mode

For the detailed description about the format of frame for each command, see the Functional description chapter in I 2C-bus to
SPI bridge (document SC18IS602B).

This application note describes the implementation of the functions in the source code. According to the guide here, engineers can
make new development based on other packages, to support more pins, of LPC802 or other MCU platform for the similar function.

2 Hardware setup
Two LPCXpresso802 boards were used in this development: one as I2C master and the other as I2C slave. The two boards were
connected with I2C bus. The I2C master board converted the user command, through the UART terminal, to I2C data/command

NXP Semiconductors
Hardware setup

Enable I2C Slave Bus Communication Bridge to SPI Master based on LPC802 MCU, Rev. 0, 11/2020
Application Note 2 / 10

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc800-cortex-m0-plus-/lpcxpresso802-for-the-lpc802-family-of-mcus:OM40000
https://www.nxp.com.cn/docs/en/data-sheet/SC18IS602B.pdf

frame, acting like a communication bridge from UART to I2C master. The I2C slave board ran the functions of I2C slave to SPI
master like the SC18IS602B, accepting the I2C command and outputting through the SPI bus and GPIO pins.

Figure 2. Two LPC802 board connected with I2 bus

I chose the LPC802 board as both the master board and the slave board because it could make the development
easier. During the development, I could reuse the driver for both master board and slave board, and also I could
use either board to debug. Only when running the final demo with two board working separately, I downloaded the
different firmware to each board according to their own role.

 NOTE

3 Software enablement

3.1 Enable the interrupt-based SPI master transfer
This part of function was used to transfer the data through the SPI bus. I used the interrupt mode here because the SPI transfer
should be launched by the execution of command when received from I2C bus. However, the I2C slave must work in interrupt
mode, so that it can monitor the commands from the master at any time. The I2C slave ISR would recognize command frame
byte-by-byte , and deal with the byte stream after receiving each byte. I would not like to stay inside the I2C slave's ISR too
much time when executing the SPI transaction and ignoring any further I2C data. So I need that the SPI driver can deal with the
transaction automatically outside the I2C slave ISR. It means the command dispatcher running inside I2C slave ISR would just

NXP Semiconductors
Software enablement

Enable I2C Slave Bus Communication Bridge to SPI Master based on LPC802 MCU, Rev. 0, 11/2020
Application Note 3 / 10

start the SPI transaction when necessary and return to wait for the next I2C command, while the SPI ISR would handle the data's
transaction simultaneously.

The spi_comm.h/.c file contains the implementation of the driver for SPI master:

void spi_init_master(SPI_Type *base);
void spi_conf_master(SPI_Type *base, spi_speed_t speed, spi_cpolcpha_t cpolcpha, spi_bitorder_t
bitorder);
void spi_master_start_xfer(SPI_Type *base, spi_master_xfer_handler_t *xfer_handler);
void spi_master_isr_hook(SPI_Type *base, spi_master_xfer_handler_t *xfer_handler);

In the application code, the spi_init_master() function should be called one time before any operation to the SPI bus.
"spi_conf_master() is optional, as a default working mode is already set up in the spi_init_master(). There would be an I2C
command to modify the SPI's configuration, so a special API is provided here to support that feature.

Then user needs to allocate a structure variable of the xfer_handler type for the SPI transfer.

spi_master_xfer_handler_t cmd_spi_master_xfer_handler_struct;

This structure variable would be filled with the data, in the buffer, to be transferred along with spi_master_start_xfer() in I2C
slave ISR:

cmd_spi_master_xfer_handler_struct.cs_mask = (rx_cmd & cmd_gpio_pinmask_for_spi_cs);
gpio_cs_pin_write_0(cmd_spi_master_xfer_handler_struct.cs_mask);
/* start the spi master transfer. */
cmd_spi_master_xfer_handler_struct.buff_len = xfer_len;
cmd_spi_master_xfer_handler_struct.rx_buff = cmd_i2c_slave_xfer_buff;
cmd_spi_master_xfer_handler_struct.tx_buff = cmd_i2c_slave_xfer_buff;
cmd_spi_master_xfer_handler_struct.xfer_done_callback = cmd_spi_master_xfer_done_callback;
spi_master_start_xfer(CMD_SPI_MASTER_INSTANCE, &cmd_spi_master_xfer_handler_struct);

The SPI ISR would handle all the process for data transfer defined in spi_master_isr_hook():

void SPI0_IRQHandler(void)
{
 spi_master_isr_hook(CMD_SPI_MASTER_INSTANCE, &cmd_spi_master_xfer_handler_struct);
}

When a buffer transfer is done, the callback function would be called. This callback function is registered into
cmd_spi_master_xfer_handler_struct, and usually used to de-assert the CS pins when used.

3.2 Enable the interrupt-based I2C slave transfer
The driver of I2C slave has to be working in the interrupt mode, as it should monitor the I2C bus at any time. The driver source
code helps to process the data transfer from the bus, while leaving the frame recognition and execution work to the code in the
application level.

The i2c_comm.h/.c file contains the implementation of the driver for I2C slave:

typedef void (*i2c_func1_t)(void *param1);
/* slave. interrupt method.*/
void i2c_init_slave(I2C_Type * base, uint8_t slave_addr, uint8_t *xfer_buff, uint8_t xfer_len);
void i2c_slave_isr_hook(I2C_Type *base);
void i2c_slave_install_xfer_done_callback(I2C_Type *base, i2c_func1_t func);

In the application code, the i2c_init_slave() function should be called first, to enable the I2C slave function after all other
peripherals, such as, SPI and GPIO, are ready, as the I2C command would be executed to handle these peripherals. The
slave_addr parameter is the local I2C slave address, matched with the I2C frame. xfer_buff and xfer_len are used to map to an

NXP Semiconductors
Software enablement

Enable I2C Slave Bus Communication Bridge to SPI Master based on LPC802 MCU, Rev. 0, 11/2020
Application Note 4 / 10

internal buffer memory. This memory block should be pre-allocated in the application but its handler is kept inside the I2C driver.
It is filled with the received data in the interrupt ISR.

The i2c_slave_isr_hook() function should be called at the entry of I2C slave ISR. As the I2C driver is interrupt-based, all the
operations about the I2C slave would be done inside the ISR. Once there is an event, received a data or any condition signal, such
as, START, STOP and ACK/NACK, asserted during the transfer, This function deals with the frame, which is assembled with a
stream of bytes, reading or writing the memory for the internal data buffer. It finally calls an internal callback function once it detects
a STOP function when told that a frame transfer is done.

In the internal callback function, the driver leaves the operation to a complete transfer event to apply, so that users
can do something according the most recent transfer. The callback function can be installed with the API function,
i2c_slave_install_xfer_done_callback(), following the type of i2c_func1_t with one parameter. Actually, the parameter of
the callback function is used to pass the pointer of frame information, so that users can access them. The parameter is actually
pointing to the structure defined in the following type.

typedef struct
{
 uint32_t flags;
 uint32_t xfer_len;
 uint8_t *xfer_data;
 uint8_t rx_cmd;
 } i2c_slave_xfer_done_callback_param_t;

3.3 Enable the command dispatcher in callback for I2C slave transfer
A callback function would be called once a frame transfer is done, marked with the STOP condition on the I2C bus. The pointer
to the memory buffer, keeping the data of most recent xfer frame, is also passed into this function as a parameter.

In this application, I recognized the commands and dispatched the execution inside this callback function. The code used was in
the switch ... case ... pattern.

void cmd_i2c_slave_xfer_done_callback(void *param1)
{
 i2c_slave_xfer_done_callback_param_t *xfer_done_param_ptr = (i2c_slave_xfer_done_callback_param_t
*)param1;
 uint32_t flags = xfer_done_param_ptr->flags;
 uint8_t rx_cmd = xfer_done_param_ptr->rx_cmd;
 uint8_t *xfer_data = xfer_done_param_ptr->xfer_data;
 uint32_t xfer_len = xfer_done_param_ptr->xfer_len;

 /* receive. */
 if (flags & I2C_SLAVE_XFER_DONE_FLAG_RECEIVE_DATA)
 {
 /* the 1st item from rx is function cmd. */
 switch (rx_cmd)
 {
 case CMD_I2C_SLAVE_CMD_CONF_SPI:
#if DEBUG_ENABLE_LOG
 printf("CMD_I2C_SLAVE_CMD_CONF_SPI: 0x%-2X.\r\n",xfer_data[0]);
#endif /* DEBUG_ENABLE_LOG */

 uint8_t bitorder = (uint8_t)((xfer_data[0] >> 5u) & 0x1);
 uint8_t cpolcpha = (uint8_t)((xfer_data[0] >> 2u) & 0x3);
 uint8_t speed = (uint8_t)(xfer_data[0] & 0x3);
 spi_conf_master(CMD_SPI_MASTER_INSTANCE,
 (spi_speed_t)speed,
 (spi_cpolcpha_t)cpolcpha,
 (spi_bitorder_t)bitorder);
 break;

NXP Semiconductors
Software enablement

Enable I2C Slave Bus Communication Bridge to SPI Master based on LPC802 MCU, Rev. 0, 11/2020
Application Note 5 / 10

 case CMD_I2C_SLAVE_CMD_CLEAR_INT:
#if DEBUG_ENABLE_LOG
 printf("CMD_I2C_SLAVE_CMD_CLEAR_INT\r\n");
#endif /* DEBUG_ENABLE_LOG */
 gpio_int_pin_clear();
 break;
 /* other commands.*/

 default:
 if (rx_cmd <= CMD_I2C_SLAVE_CMD_WRITE_BUFF)
 {
#if DEBUG_ENABLE_LOG
 printf("CMD_I2C_SLAVE_CMD_WRITE_BUFF: 0x%-2X, %d\r\n", rx_cmd, xfer_len);
#endif /* DEBUG_ENABLE_LOG */
 cmd_spi_master_xfer_handler_struct.cs_mask = (rx_cmd &
cmd_gpio_pinmask_for_spi_cs);
 gpio_cs_pin_write_0(cmd_spi_master_xfer_handler_struct.cs_mask);

 cmd_spi_master_xfer_handler_struct.buff_len = xfer_len;
 cmd_spi_master_xfer_handler_struct.rx_buff = cmd_i2c_slave_xfer_buff;
 cmd_spi_master_xfer_handler_struct.tx_buff = cmd_i2c_slave_xfer_buff;
 cmd_spi_master_xfer_handler_struct.xfer_done_callback =
cmd_spi_master_xfer_done_callback;
 spi_master_start_xfer(CMD_SPI_MASTER_INSTANCE,
&cmd_spi_master_xfer_handler_struct);
 }
 break;
 }
 }
 /* */
}

This callback function was installed in the I2C slave driver in the application-level code:

void cmd_i2c_slave_init(void)
{
 i2c_init_slave(CMD_I2C_SLAVE_INSTANCE, CMD_I2C_SLAVE_ADDRESS, cmd_i2c_slave_xfer_buff,
CMD_I2C_SLAVE_XFER_BUFF_LEN);
 i2c_slave_install_xfer_done_callback(CMD_I2C_SLAVE_INSTANCE, cmd_i2c_slave_xfer_done_callback);
}

3.4 Enable the I2C Master driver on the test machine
To verify the working condition on the slave machine, a test machine running the I2C master is also necessary.

In this project, I used the I2C master driver in the polling mode for a simpler use case. The i2c_comm.h/.c file contained the
implementation of the driver for I2C master in the polling mode:

/* master. polling method.*/
void i2c_init_master(I2C_Type * base, i2c_speed_t speed);
void i2c_master_read(I2C_Type * base, uint8_t dev_addr, uint8_t *buff, uint8_t len);
void i2c_master_write(I2C_Type * base, uint8_t dev_addr, uint8_t *buff, uint8_t len);

NXP Semiconductors
Software enablement

Enable I2C Slave Bus Communication Bridge to SPI Master based on LPC802 MCU, Rev. 0, 11/2020
Application Note 6 / 10

Here, the APIs are dealing with the operations to the bus, not to the device. It means, when calling the
i2c_master_read() function, it directly performs the read operation from the bus, not the case that writing
the register address and reading from the previous pointer. To avoid the operation, you need to call the
i2c_master_write() first, with the register address as the first item in the transferring buffer, and then call the
i2c_master_read() to get the contents for the register.

 NOTE

3.5 Enable a command shell on the test machine
A cmd_shell component is used to enable a shell based on the UART.

In this project, I interaced the test machine through the console. The source codes of cmdshell were all in the cmdshell.h/.c file.
The porting work was included in the cmd_shell_adapter.c file, to remap the IO channel to UART:

#include "cmd_shell.h"
#include <stdio.h>

void CmdPutChar(char c)
{
 /* Put data to bus. */
 putchar(c);
}

char CmdGetChar(void)
{
 char ch;

 /* Fetch data from bus. */
 ch = getchar();

 return ch;
}

const CMD_HandlerCallback_T CmdHandlerCallbackStruct =
{
 .SER_PutCharFunc = CmdPutChar,
 .SER_GetCharFunc = CmdGetChar,
 ">"
};

Then I created the commands according to requirements in the main.c file:

extern const CMD_HandlerCallback_T CmdHandlerCallbackStruct;

/* Cmd Table. */
CMD_TableItem_T CmdI2CMasterTestCmdsTable[] =
{
 {"help", 1, cmd_show_help},
 {"spi_write", 8, cmd_i2c_master_spi_write},
 {NULL}
};
int32_t cmd_show_help(int32_t argc, char *argv[])
{
 uint32_t index = 0u;
 printf("# cmd_show_help()\r\n\r\n");
 while (CmdI2CMasterTestCmdsTable[index].CmdName != NULL)
 {
 printf(" - %s\r\n", CmdI2CMasterTestCmdsTable[index].CmdName);
 index++;

NXP Semiconductors
Software enablement

Enable I2C Slave Bus Communication Bridge to SPI Master based on LPC802 MCU, Rev. 0, 11/2020
Application Note 7 / 10

 }
 printf("\r\n");
 return 0;
}

int32_t cmd_i2c_master_spi_write(int32_t argc, char *argv[])
{
 for (uint32_t i = 0u; i < argc-1; i++)
 {
 cmd_i2c_master_xfer_buff[i] = atoi(argv[i+1]);
 printf("0x%-2X, ", cmd_i2c_master_xfer_buff[i]);
 }
 printf("\r\n");

 i2c_master_write(CMD_I2C_MASTER_INSTANCE, CMD_I2C_SLAVE_ADDRESS, cmd_i2c_master_xfer_buff,
argc-1u);
 printf("i2c_master_write() done.\r\n");

 return 0;
}

Finally, I called in the main() function:

 CMD_InstallHandler(&CmdHandlerCallbackStruct);

 while (1)
 {
 CMD_LoopShell(CmdI2CMasterTestCmdsTable);
 }

4 Run the demo
When the demo is running, a shell is working based on the UART terminal of master' board. The following three commands are
in the list:

• help: To show all the available commands.

• spi_write: To write the data through the I2C bus and keep them into slave's buffer. The application running on the slave
board recognizes the commands and activates, sending data or just updating the settings.

• spi_read: To read the SPI data buffer from the slave board.

Figure 3 shows an example.

NXP Semiconductors
Run the demo

Enable I2C Slave Bus Communication Bridge to SPI Master based on LPC802 MCU, Rev. 0, 11/2020
Application Note 8 / 10

Figure 3. Run the commands through the console

NXP Semiconductors
Run the demo

Enable I2C Slave Bus Communication Bridge to SPI Master based on LPC802 MCU, Rev. 0, 11/2020
Application Note 9 / 10

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application
or use of any product or circuit, and specifically disclaims any and all liability, including
without limitation consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in different applications,
and actual performance may vary over time. All operating parameters, including “typicals,”
must be validated for each customer application by customer's technical experts. NXP does
not convey any license under its patent rights nor the rights of others. NXP sells products
pursuant to standard terms and conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC,
MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire,
ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,
PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform
in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D
are trademarks of NXP B.V. All other product or service names are the property of their
respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio,
CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled,
NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME,
ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected
by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle
and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and
Power.org word marks and the Power and Power.org logos and related marks are trademarks
and service marks licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 11/2020
Document identifier: AN13059

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction & Requirements
	2 Hardware setup
	3 Software enablement
	3.1 Enable the interrupt-based SPI master transfer
	3.2 Enable the interrupt-based I2C slave transfer
	3.3 Enable the command dispatcher in callback for I2C slave transfer
	3.4 Enable the I2C Master driver on the test machine
	3.5 Enable a command shell on the test machine

	4 Run the demo

