
1 Introduction
This application note focuses on enabling deep learning on NXP
microcontrollers with Arm® Cortex®-M0/M0+ cores. Machine learning and deep
learning models are powerful algorithms associated with high demand of
processing power and often known as memory hungry applications. In this
application note, we demonstrate the possibility to embed a deep learning
model on different NXP microcontroller families with Arm Cortex-M0 and M0+
as main core.

For that purpose, we designed a simple convolutional neural network (CNN)
as a deep learning model example, but similar porting approach could be
followed for other types of DL models as well. As an example use case, we
selected solving the handwritten digit classification task using the MNIST data
set, but the same flow could be replicated for any other type of vision, audio or
anomaly detection use cases. This document also clarifies the main conditions to achieve a model running on a small specific
embedded device.

This application development is mainly leveraging the NXP’s SDK and the eIQTM technology.

2 eIQTM and Glow introduction
The eIQ™ is an NXP® machine learning (ML) software development environment that enables the use of ML algorithms on NXP
EdgeVerse™ microcontrollers and microprocessors, including i.MX RT crossover MCUs, and i.MX family application processors.
This application note shows how to extend it to other microcontroller families, such as Kinetis and LPC.

eIQ ML software includes an ML workflow tool called eIQ Toolkit, along with inference engines, neural network compilers
and optimized libraries. This software leverages open-source and proprietary technologies and is fully integrated into NXP
MCUXpresso SDK and Yocto development environments, allowing to develop complete system-level applications with ease.
Figure 1 depicts the different inference engines enabled on different processing cores correspondingly.
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Figure 1. eIQ software ecosystem

On the left side of the figure, we enumerate different inference engines included inside the eIQ component of the software
development kit for microcontrollers; DeepViewRT™, TensorFlowTM Lite / TensorFlowTM Lite Micro, and Glow. This application
note leverages glow inference engine to provide additional support for more devices not listed on the latest figure.

Glow machine learning compiler enables ahead-of-time compilation; it converts the neural networks into object files, then the
user converts these into a binary image for increased performance and smaller memory footprint as compared to other runtime
inference engines. Since Glow enables this conversion to target different Arm Cortex-M cores, this application note demonstrates
how to leverage the eIQ glow to embed deep learning models on Arm Cortex-M0+ NXP microcontrollers.

Moreover, the two mentioned advantages of the Glow compiler (high performance and the small memory footprint) are very useful
when the target is a low end microcontroller with limited core frequency and limited embedded memory, which makes glow a very
suitable inference engine for such use case.

3 Requirements for running deep learning on Arm Cortex-M0/M0+
As depicted in Figure 2, the ML development steps consist of first defining the model architecture then iteratively train and optimize
the model to achieve the required accuracy based on the collected data.

This is typically done on the PC or on the cloud using one of deep learning frameworks. Once the model is validated, the eIQ glow
documentation guides the user through required steps to inference the model on the targeted device.
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Figure 2. Machine learning process

For the Arm Cortex-M0/M0+ based targets, one important limitation to consider is the absence of the floating point unit (FPU)
which is available for Arm Cortex-M33 and Arm Cortex-M7 (see Figure 3). The main consequence of this limitation is that the deep
learning model should be fully quantized in order to be inferenced on an M0/M0+ core.

Figure 3. High-level architecture of different Cortex-M from Arm

During training of the model, the user can specify the data type of the model parameters. Usually model parameters as well as
processing operations use floating point. Nevertheless it is possible to directly train a model in fixed points, such as int8 or int16,
and this is often referred as quantization aware training. In the later case, the glow tool provides possibility to convert quantized
model (for example, TFLite format) into glow conformant object file. In the case where the model is trained in floating point, glow
provide all required tools to convert it to quantized glow model with different quantization options (see Workflow for porting the DL
model on microcontroller). In both cases, the main challenge of the model designer is to ensure that the overall model accuracy,
impacted by the quantization, is still satisfying the accuracy requirement.

The second requirement is about the embedded device memory (RAM and Flash) being large enough to fit the memory footprint
required by the model processing. The total model size (model parameters and model instructions) has to be small enough for
the given available embedded flash of the device. Same applies for the embedded RAM, since model processing requires internal
buffers for saving intermediate operations output parsed from one layer to the next layer of the model. The bundle generated
by glow during model conversion provides means to quantify the model memory footprint and this is deeply explained in the
application note AN13001.

Another requirement that should be considered especially for real-time use cases is inference time; the total time required by
the core to run the model inference. Since low end devices are characterized by relatively low performance, the inference time
is expected to be high. Nevertheless for a lot of use cases with low complexity, a simple neural network model with few layers
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can very accurately solve the task even quantized. Besides, for some use cases like predictive maintenance, it is just needed to
process the anomaly detection algorithm occasionally with no real-time requirement.

Results and performance comparison shows how this varies according to the core performance/frequency. Workflow for porting
the DL model on microcontroller demonstrates how it is possible to design a deep learning model solving the handwritten digit
classification task (based on MNIST data set) while satisfying all requirements mentioned in this section.

4 ML/DL Development: Design of a simple CNN solving handwritten
classification task with MNIST data set

Since this application note aims at deploying machine learning models on Arm Cortex M0/M0+ microcontrollers, a very classic
machine learning task is used as an example; MNIST handwritten digit classification. This is the machine learning “hello world”
for images.

MNIST stands for Modified National Institute of Standards and Technology. The data set is made of 60000 labeled images for
training and 10000 for validation and testing. The images are 28x28 pixels grayscale images of handwritten digits from 0 to 9. The
task is to classify each image into the right category from 0 to 9. The original images were bitmap images. Each pixel was coded
on 1 bit, black or white. Those images were converted to 28x28 format and an anti-aliasing filter was applied. The filter allows to
smooth the boundaries between black and white pixels and the pixels are now coded on 8 bits. The “modified” word in the name
of the data set comes from a new way to organize the training and testing sets. Before, the training set was not collected the same
way as the testing set. They have now been shuffled.

Here are examples of pictures in the training set.

The testing set looks similar.

Images displayed on a screen usually have 3 dimensions; RGB for Red, Green, Blue. A 28x28 pixel RGB image is represented by
a tensor of shape 28x28x3. This data set is in grayscale format so there is just one color channel. The shape of the image tensor
is: 28x28x1. The images are coded on 8 bits, the values will be between 0 and 255. The first image of the data set is a 5. It is coded
as the following matrix:

It is a matrix of dimension 28x28 filled with numbers between 0 and 255. A low value is a black pixel and a high value is a
white pixel.
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Our goal is to predict what number is on the picture. Here is another example from the training data set. It is a 9 in image format.

Our goal is to return a vector of size 10 containing the predictions from 0 to 9 like in the following figure. The highest value in the
prediction vector corresponds to the predicted class. For this example, the last row of the vector is the biggest.

Let us have a look at how to build such a model. The model is trained using Python 3.8.9 and Jupyter Notebook IDE. Here are
the different packages used.

• TensorFlow 2.0.0

• Numpy 1.20.2

• Matplotlib 3.4.2

TensorFlow is a machine learning framework written by Google. Numpy is a mathematical library. Matplotlib is a library used to
plot graphics. The libraries can be imported with these lines.

MNIST data set is already available inside TensorFlow. In order to get the dimension that TensorFlow expects for images, the data
is loaded with these lines.
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The input data dimension is (batch, 28, 28, 1). Batch size is the number of samples to use for a training iteration.

The model uses the following layers; convolution, max pooling, fully connected, flatten and dropout. The description of these layers
is out of the scope of this application note but you can find some information on the Internet.

The model definition is done with the following code.
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The layers come in this order:

This model is a convolutional neural network. It is not usual to start a convolutional neural network by a max pooling layer. It is
useful here because it helps to decrease the number of parameters. Our target MCUs for this application have a small memory.
It is like converting the images from 28x28 to 14x14 as a pre-processing and skipping the first layer.

The input shape for max_pooling_1 is (None, 28, 28, 1). The output shape for each layer is given in the following table.
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The model has only 1662 parameters. This is a small number. Usually models have millions of parameters. Our model still can
be trained to a high accuracy as the task is simple.

The next choice is about the loss, optimizer and metric.

Here, a loss function called sparse categorical cross-entropy is used. It is a loss that is useful for classification problems on data
with exclusive labels. In our problem, an image can be either a 0 or a 7 but not both. Some details about this loss function can be
found on TensorFlow’s webpage: https://www.tensorflow.org/api_docs/python/tf/keras/losses/SparseCategoricalCrossentropy.

The Adam optimizer is used. This is an updated version of the stochastic gradient descent. You can also read about Adam
optimizer in TensorFlow’s documentation.

The accuracy metric is used. This corresponds to the true positive plus the true negatives on the total number of samples.

You can read more about it on Wikipedia: https://en.wikipedia.org/wiki/Precision_and_recall.

The model is then trained for 100 epochs. The batch size is 32. The samples are processed by packets of 32.
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Here is a view of the training for the first 3 epochs and the last 3 epochs.

Some progress can be seen in the loss and accuracy. Loss is decreasing and accuracy is rising close to 100%. At the end, a value
in our validation set should be recognized 95% of the time. That’s a good result.

Let us now visualize how the loss and accuracy evolve through the 100 epochs of the training.
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The accuracy is going up and the loss is going down for both training and test set. Usually the training curves are better than the
test curves. Better meaning higher for the accuracy and lower for the loss. Here, the test curves are better than the training curves.
It may be that the test images are easier to classify than the training examples due to the fact that the test set has less confusing
examples than the training set.

Then, the model can be saved in h5 format with the following line.

 
This data set can achieve a higher performance when other networks are used (>98%). However, 95% is enough
for this application note. LeNet is an example of neural network that performs better but requires more memory and
more CPU cycles.

  NOTE  
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Table 1.

Parameters Accuracy

LeNet 1,256,080 98.08%

Our model 1,662 95.13%

 
This trained model is included in the AN software zip.

  NOTE  

5 Workflow for porting the DL model on microcontroller
The eiQ Glow tool could be directly downloaded from the corresponding NXP webpage (Glow installer for windows). The eIQ glow
user guide details and explains all the steps of the included tools. If you are not already familiar with glow, see section 4) Model
compilation and its subsections bundle generation and model profiling.

Since the available model from the previous section is in Keras format, one prior step is to convert it from the Keras format (.h5)
to the ONNX format (.onnx), since The Glow compiler currently has support only for Caffe2, ONNX, and TensorFlowLite model
formats. For that conversion, we run a simple python script (attached in AN software zip) that uses onnxmltools library.

As documented, The main steps are to execute the model profiling tool in order to generate the quantization profile and then the
model compiler in order to generate the bundle:

Generating quantization profiling

image-classifier.exe current_test_image.png -image-mode=0to1 -image-layout=NHWC -model=MNIST_NXP.onnx -onnx-define-
symbol=N,1 -model-input-name=max_pooling_1_input -dump-profile=profile.yaml

Generating the bundle for M7

model-compiler.exe -backend=CPU -float-abi=hard -model=MNIST_NXP.onnx -target=arm -mcpu=cortex-m7 -onnx-define-
symbol=N,1 -emit-bundle=bundle_m7 -load-profile=profile.yaml -network-name=mnist_nxp -convert-placeholders -dump-graph-
DAG=quantized_graph.pdf

Generating the bundle for M0

model-compiler.exe -backend=CPU -model=MNIST_NXP.onnx -target=arm -mcpu=cortex-m0 -onnx-define-symbol=N,1
-emit-bundle=bundle_m0 -load-profile=profile.yaml -network-name=mnist_nxp -convert-placeholders -dump-graph-
DAG=quantized_graph.pdf

 
Main difference between both execution is the argument about the target CPU (-mcpu). Besides, the argument
-float-abi=hard (specifying that the FPU can be used) is left for M0.

  NOTE  

 
-convert-placeholders is an important argument that ensures that the model input and output nodes are converted
to the quantized format.

  NOTE  

 
-dump-graph-DAG=quantized_graph.pdf generates the graph of the bundle showing details of each layer including
quantization parameters (used later).

  NOTE  

The default (previously used) quantization specification is asymmetric with Int8 for the weights, Int32 for the biases, but this can
be changed with user preferences as shown in Figure 4.
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Figure 4. Model-compiler.exe -help

In order to obtain the image current_test_image.png, the attached python script validation.py selects a random image from Keras
mnist data set, saves the current image, feeds it in the model as input and prints the model output for this image.

After executing the glow commands, you should be able to obtain two glow bundles (one four M0 and one for M7) with respectively
four files as depicted in Figure 5 where the header file indicates the memory consumption.

Figure 5. Different screenshots of glow bundle files

At this stage, we can expect the model graph generated by Glow as PDF. This shows details of each layer including
quantization parameters.

Figure 6. Screenshot from quantized_graph.pdf

For instance, the input placeholder, according to the graph of our model, is expected to have a quantization scale; S:0.003921569
(corresponds to 1/255) and an offset of O:-128. Given these parameters and knowing the original image input range (0to1), we
can conclude that the image range for quantized model should be -128 to127.

Now we can convert one static test image into a C array that will be loaded into Flash and used as input
for the model inference on the board. The glow_process_image.py python script can be found in the SDK at
<SDK_dir>\middleware\eiq\glow\examples\common. This script generates a input_image_test.inc file that will be used in the next
section. Note that the generated file is 28*28*1=784 bytes in size because of the 28x28 pixel monochromatic image which uses
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1-byte (int8) fixed-point integer input that the quantized model requires. The following command converts the image to int8 and
saves it in a txt format (.inc file):

python glow_process_image.py -image-path=current_test_image.png
-output-path=test_image.inc -image-layout=NHWC -image-channel-order=BGR -image-type=int8
-image-mode=neg128to127

Now that the M7 glow bundle is generated, the section 5.2 integrating the bundle of the eIQ glow user guide is the main reference
in order to inference the model on one of the available NXP M7 MCUs (RT1050/RT1060/RT1064/RT1160/RT1170).

1. Open up MCUXpresso IDE and select a new workspace

2. Install the RT1170 SDK into the “Installed SDKs” tab by dragging-and-dropping the RT1170 SDK .zip file downloaded
earlier into the Installed SDK window. A dialog box comes up. Click OK to continue the import.

3. In the Quickstart Panel in the lower left corner, click Import SDK examples(s), select your RT board and click Next,
Expand the eiq_examples category and select the glow_lenet_mnist example and make sure UART is selected for the
SDK Debug Console. Click Finish.

4. Now we need to add the files generated in the previous section into this project. There are 3 files that need to be
included and are found in the “source” folder that was created by the compiler. The fourth file is the test image.
Remember that the “mnist_nxp” name comes from the “-network-name” argument you gave when running model-
compiler.

a. mnist_nxp.h

b. mnist_nxp.o

c. mnist_nxp.weights.txt

d. test_image.inc

5. The original “mnist” files could be deleted and the input_image.inc could be deleted. So the source folder looks as
follows:

Figure 7. Project source folder

6. Change the project properties and modify the linker options such that it includes the bundle object file when linking the
application: Right-click the project and select "Properties". b. Select "C/C++ Build" > "Settings". c. In the "Tool Setting"
tab, select "MCU C++ Linker" > "Miscellaneous". d. Add the bundle to "Other objects". e. Click "Add..." and specify the
relative path to the bundle in the project. That is, “../source/mnist_nxp.o”.

7. Everywhere in the main.c file that lenet_mnist is used, it should be changed to just “mnist_nxp” and use the new
variable names created by the generated files (MNIST_NXP_MEM_ALIGN, MNIST_NXP_CONSTANT_MEM_SIZE,
MNIST_NXP_MUTABLE_MEM_SIZE, MNIST_NXP_ACTIVATIONS_MEM_SIZE and mnist_nxp)

8. Change input address to MNIST_NXP_max_pooling_1_input and output address to MNIST_NXP_dense_2__1. These
are found in the minst_nxp.h file.

9. Change the input size to 28x28x1 and change the imageDate to test_image.inc

10. Change the output cast to int8_t *out_data = (int8_t*)(outputAddr);
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11. Change int8_t max_val = 0.0;

12. Change code to include printing of confidence of each class

13. Since the mnist_nxp model is very fast, change the printed duration to us instead of ms.

14. Clean, build, and debug the project.

Finally we can see the model output of the inferenced image on the terminal. We should be able to conclude a match between the
output of the model running with glow on the embedded device and the output of the model running on PC using python script. For
more testing you can iterate; run validation.py (to save new random digit image) then run python glow_process (to convert image)
and finally include the new generated test_image in the project.
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Figure 8. Match between quantized glow model on embedded device and original model running on PC

Now that you are able to run the fully quantized model solving MNIST on an RT device, the next steps show how to
inference the model on an M0 MCU using MCUXpresso IDE and extending eIQ on SDKs of different family boards, such
as SDK_x_FRDM-KE02Z40M, SDK_x_FRDM-KE04Z, SDK_x_FRDM-KE16Z, SDK_x_LPC845BREAKOUT, SDK_x_FRDM-
K32L2B, SDK_x_FRDM-KV11Z.

1. On the same previously used workspace, install the SDK for the preferred device (list above) from
www.mcuxpresso.nxp.com

2. Import a simple hello_world project from the corresponding SDK, still in the same SDK used for the RT project

3. Include the bundle files inside the source folder of your project

4. Copy the glow bundle utils found under eiq<glow<bundle_utils and the main source file from the RT project
(glow_bundle_utils.c, glow_bundle_utils.h and main.c) to the source folder of your project. The test image should be
copied as well. In order to calculate the inference time, timer.c and timer.h should be copied. It should now look the
following:

5. Add the mnist_nxp.o compiled code from the Glow compiler output by clicking the Miscellaneous settings→Other
objects→Add button to include the object file "${workspace_loc:/${ProjName}/source/NXP_MNIST.o}"

6. Adapt the board initialization of the main.c (first code lines of the main function) to the target board copying from the
original main function of the hello_world.c (this will vary from one board to another).

NXP Semiconductors
Workflow for porting the DL model on microcontroller

Inferencing Deep Learning on Cortex M0/M0+ with the eIQTM Glow Inference Engine, Rev. 0, 18 November 2021
Application Note 15 / 19

http://www.mcuxpresso.nxp.com


7. Do the same for the includes of the header files inside main.c (example: #include peripherals.h should be removed) (this
will vary from one board to another).

8. Change the used library under Settings, managed Linker Script to NewLib (nohost (for UART) or semihost depending
on console preference)

9. Verify the following preprocessor macros to enable correct printing of the output

10. Finally, prevent the hello_world.c file from compiling by right clicking on that file and selecting Properties. In the dialog
box that comes up, select the C/C++ Build category, and check the Exclude resource from build option. Then click
Apply and Close.

11. Clean, build, and debug project

6 Results and performance comparison
This final session lists the memory consumption (Flash and RAM) and the inference time of the MNIST NXP model running on
different tested Arm Cortex-M0 based microcontrollers.

• LPC845 with M0+ core clocked at 30 MHz (board is LPC845-BRK with 64 kB Flash and 16 kB RAM)

• KE16Z with M0+ core clocked at 48 MHz (board is FRDM-KE16Z with 64 kB Flash and 8 kB RAM)

• KE02Z64 with M0+ core clocked at 40 MHz (board is FRDM-KE02Z40M with 64 kB Flash and 4 kB RAM)

• K32L2 with M0+ core clocked at 48 MHz (board is FRDM-K32L2B with 256 kB Flash and 32 kB RAM)
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• KV11Z with M0+ core clocked at 75 MHz (board is FRDM-KV11Z with 128 kB Flash and 16 kB RAM)

The memory consumption values correspond to the footprint of the complete software project (and not only the deep learning
model) including all required essential drivers for running the MCU and communicating output to serial COM. All these software
projects are attached in the AN zip. Although the ported model is exactly the same (so its memory consumption is exactly
the same), we still see differences in memory consumption between the different boards (see Table 2). This is explained by
the difference of the included low-level drivers which are lighter for small microcontrollers compared to the RT microcontroller
for example.

For each device, the inference time is calculated for two different configurations; either the model parameters are read directly from
non-volatile Flash memory during model inference (this could be ensured by adding “const” in front of the weight array definition)
or by copying these parameters to the volatile RAM during booting time. The difference is about a trade-off between lower RAM
consumption (model kept in Flash) or faster inference time (model copied to RAM).

Table 2. Performance comparison table

Model Flash RAM Inference time

RT1060 (Flash) 36312 B 11 KB 0.63 ms

RT1060 (RAM) 36312 B 13504 B 0.55 ms

KE16Z (Flash) 25308 B 4012 B 13.5 ms

KE16Z (RAM) 25308 B 6252 B 12.9 ms

KE02 (Flash) 22204 B 3372 B 16.7 ms

KE02 (RAM) Not possible (exceeding available RAM)

LPC845 (Flash) 18412 B 5144 B 36.7 ms

LPC845 (RAM) 18412 B 7384 B 35.6 ms

K32L2 (Flash) 22748 B 7084 B 13.3 ms

K32L2 (RAM) 22748 B 9324 B 12.9 ms

MKV11Z (Flash) 23192 B 5032 B 8.5 ms

MKV11Z (RAM) 23192 B 7272 B 8.3 ms

Despite the low performances of the M0 based microcontrollers, we see that the inference time in all cases significantly lower
than 100 ms. These results confirm that it is possible to design lightweight deep learning models that are convenient for low
end microcontrollers.

7 Conclusion
This application note demonstrates that NXP low end microcontrollers (Arm Cortex-M0 based) are capable of inferencing
machine learning models on the edge. Starting from an available data set, achieving an embedded model running on a simple
microcontroller, the AN shows all the required steps to follow (See Workflow for porting the DL model on microcontroller),
leveraging the NXP eIQ toolkit for AI/ML.

ML/DL Development: Design of a simple CNN solving handwritten classification task with MNIST data set depicts the methodology
of designing a lightweight model convenient for small edge device for a particular application and Results and performance
comparison concludes that the achieved performances of NXP small MCUs running such model are impressive.
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