
1 PowerQuad introduction
Mobile IoT and Context® awareness are growing tremendously. More local
digital signal processing is required. Low-power always-on systems are good
options for Cortex M33-based MCUs (for leakage reduction and overall low
power, considering limited computation).

Arm® Cortex-M33 architecture gears towards energy efficient
control applications.

Signal processing lags behind traditional DSP architectures, sometimes as
much as 10x-20x in terms of performance due to the following factors:

• Narrow memory width (single 32-bit data bus) – DSPs contain at least
two data buses and local memory blocks.

• Limited simultaneous computational capability (for example, one
multiplication + add per cycle).

• Not enough registers for intermediate keeping of necessary data.

• No dedicated built-in accelerators for functions, such as, FFT (large load of additions/subtractions) and Biquad Filters.

Although Arm does not bring large-scale DSP improvements to Cortex-M family of cores, it has standardized the DSP library
(CMSIS DSP Lib). When using a common standard interface for DSP functions, there is an opportunity to provide a vendor
supplied optimizations. User code still uses CMSIS DSP, but NXP can improve the recipe under the hood. Accelerating
computations cuts power. MCU goes to sleep and then runs slowly at a lower frequency and lower voltage (lowering energy further
still). Then, the PowerQuad comes.

The below are mathematical requirements in DSP applications:

• Motion context

— Matrix operations, Rotation via trigonometric functions, FFT, Filter (FIR/IIR) for calibration.

— Convolution and correlation for motion feature extraction and matching.

• Voice recognition

— FFT for spectral analysis, Logarithm, and Mel-Frequency and other windowing (Matrix multiplication), Filter (FIR/IIR),
DCT for Cepstrum extraction.

— Statistical modeling for feature extraction and comparison.

• Neural networks architecture-specific features

— Matrix MAC

— Logistic/Sigmoid function (using exponentiation) for perception evaluation (also very useful for statistical distribution
analysis.

• Biometrics

— FFT for Heartbeat monitoring, Arctan/other trig for Fingerprinting.

Contents

1 PowerQuad introduction..................1
2 PowerQuad hardware..................... 2
2.1 PowerQuad computing features

...2
2.2 PowerQuad bus interfaces.......... 3
2.3 PowerQuad memory handlers..... 4
3 PowerQuad DSP examples............ 5
3.1 Hardware environment setup.......5
3.2 Task schedule with display GUI...6
3.3 Functions of measuring time........7
3.4 FFT demo cases..........................7
3.5 Matrix demo cases.....................11
3.6 FIR demo cases.........................14
4 PowerQuad vs Arm CMSIS-DSP

performance.................................. 19
5 Revision history.............................21
Legal information.................................... 22

AN13498
Digital Signal Processing for NXP LPC553x/LPC55S3x Using
PowerQuad
Rev. 1 — 25 May 2022 Application Note

Now, the PowerQuad can support most mathematical requirements on the hardware. It accumulates the process and saves CPU
time for other thread simultaneously.

2 PowerQuad hardware

2.1 PowerQuad computing features
As a hardware module integrated inside the chip, PowerQuad executes the calculation task all on the hardware. It involves various
computing engines:

• Transform engine

• Transcendental function engine

• Trigonometry function engine

• Dual biquad IIR filter engine

• Matrix accelerator engine

• FIR filter engine

• CORDIC engine

Table 1 lists the computing features that PowerQuad supports directly.

Table 1. PowerQuad hardware function

Class Function Comments

Math
1/x, ln(x), sqrt(x), 1/sqrt(x), e"(x), e"(-x), (x1) / (x2), sin(x), cos(x) Coprocessor instruction

arctan(x), arctanh(x)

Filter

2nd order IIR filter Coprocessor instruction

• FIR filter

• FIR filter incremental

• Correlation

• Convolution

Matrix

• Scale

• Addition

• Subtraction

• Invert

• Product

• Hadamard product (element-wise product)

• Transpose

• Dot product

—

Transform
• Complex FFT (complex-valued input sequence)

• Real FFT (real-valued input sequence)
—

Table continues on the next page...

NXP Semiconductors
PowerQuad hardware

Digital Signal Processing for NXP LPC553x/LPC55S3x Using PowerQuad, Rev. 1, 25 May 2022
Application Note 2 / 24

Table 1. PowerQuad hardware function (continued)

Class Function Comments

• Inverse FFT

• Complex DCT (complex-valued input sequence)

• Real DCT (real-valued input sequence)

• Inverse DCT

These functions form the foundation for the implementation of advanced algorithm.

2.2 PowerQuad bus interfaces
PowerQuad is integrated with the Arm Cortex-M33 co-processor Interface. It can be accessed through the co-processor
instructions (MCR and MRC). Also, there are programmable registers designed inside the PowerQuad to connect the AHB bus.
User code running on the Cortex-M33 core can read and write its register, as other normal programmable modules. See Figure 1.

However, specific access ways are for the specific usage. Generally, for PowerQuad, Arm Cortex-M co-processor interface, and
AHB slave interface are used to deliver the commands/configurations. AHB master interface and the private RAM master interface
are used to operate the memory.

Figure 1. PowerQuad bus interfaces

• Co-processor functions

When doing the calculation which accepts one number as input parameter and returns one number as output result, they
use the Cortex-M Co-processor interface to pass in the input parameter and return the result. For example, the most math
functions are implemented in this way. These functions are simple and running very soon.

NXP Semiconductors
PowerQuad hardware

Digital Signal Processing for NXP LPC553x/LPC55S3x Using PowerQuad, Rev. 1, 25 May 2022
Application Note 3 / 24

• Streaming/DMA functions

When doing the calculation that works on an array of data and the result is another array of data, the PowerQuad uses a
DMA-like way to handle the input and output data. Examples of AHB access functions are the transform functions, matrix
functions, and most filter functions. When using the PowerQuad for these functions, set some base address registers of
PowerQuad, like using DMA. Then, the PowerQuad hardware uses the memory indicated with these addresses automatically
when the calculation is launched.

NXP MCUXpresso SDK already provides the driver for PowerQuad. It packs the operations with co-processor interface
(co-operator instruments) and AHB bus (functional registers). So, if the users develop their applications with the SDK API, they
do not need to care how to select the instructions or register settings.

2.3 PowerQuad memory handlers
When considered as an embedded mathematics computer, the PowerQuad needs numerous data to be processed and produced.

Along with the powerful computing engines, there are four groups for memory handler, which indicate the four memory areas to
support the data management requirement of PowerQuad functions.

• Input A. pointer to the input data array 1.

• Input B. pointer to the input data array 2 when necessary. For example, when making the matrix addition, indicate the
other matrix by Input B handler.

• Temp. pointer to the temporary memory that keeps the intermediate computational results when necessary (for FFT and
Matrix Inversion). Initialize the memory before the current calculation and then clear it later. PowerQuad writes values and
reads them automatically during the calculation.

Configure each memory area for the customized format:

• Format of originating data (32-bit fixed, 16-bit fixed or 32-bit float)

• Format of data desired for PowerQuad (float for all except FFT, which is a fixed-point engine)

• Scale of result (PowerQuad can do scaling by power of 2 on the way in its out.)

Users can fill the address of prepared memory into the responding registers in the PowerQuad module, as shown in Table 2.

Table 2. PowerQuad registers for memory handlers

Address Name Description Access Reset value

0x000 OUTBASE Base address register
for output region

RW 0

0x004 OUTFORMAT Data format for
output region

RW 0

0x008 TMPBASE Base address register
for temp region

RW 0

0x00C TMPFORMAT Data format for
region Temp

RW 0

0x010 INABASE Base address register
for input A region

RW 0

0x014 INAFORMAT Data format for region
input A

RW 0

Table continues on the next page...

NXP Semiconductors
PowerQuad hardware

Digital Signal Processing for NXP LPC553x/LPC55S3x Using PowerQuad, Rev. 1, 25 May 2022
Application Note 4 / 24

Table 2. PowerQuad registers for memory handlers (continued)

Address Name Description Access Reset value

0x018 INBBASE Base address register
for input B region

RW 0

0x01C INBFORMAT Data format for region
input B

RW 0

PowerQuad can handle the general RAM memory (shared with other AHB masters, like Cortex-M core) and private RAM memory
(start from 0xE000_0000, 16 KB). Specially, for private RAM memory, as it is reserved only for PowerQuad, PowerQuad can
access it without any arbitration delay, saving time for PowerQuad to get data. Then, PowerQuad can access the private RAM
four banks of memory in parallel, giving 128-bit wide. So, it performs some functions even much faster, such as, FFT, FIR,
convolution, matrix.

When using the private RAM,

• FFT engine may only use the private memory as temp memory (not as input or output).

• All data in private memory must be floating point. (You can get data in and out of private memory by using the matrix scale
operation with private memory being destination).

• The private memory does not provide any scaling. Scaling is only available for data which is being read/written to the
system memory.

3 PowerQuad DSP examples
This section describes the basic usage of PowerQaud in application and the PowerQuad APIs during the explanation of
demo case.

The demo runs on the LPCXpresso55S36 board with an LCD screen module to show the GUI. In the demo project, a simple
framework can switch the separate task as a scheduler. Execute simple tasks one by one, for FFT, matrix, and FIR. With the LCD
screen module, the display function is integrated into the framework.

The PowerQuad FFT, matrix, and FIR filter are chosen in this demo. These calculations are popular in most DSP application
but usually cost time when implemented by pure software (Arm CMSIS-DSP Lib). PowerQuad vs Arm CMSIS-DSP performance
provides a comparison of performance for PowerQuad APIs and Arm CMSIS-DSP API.

This application note does not discuss the details about the calculation process. For further information, see PowerQuad UM and
SDK driver code.

A detailed illustration about using PowerQuad APIs is described for FFT cases. The same idea is applied to other cases.

3.1 Hardware environment setup
Before running the DSP example, set up the hardware environment.

• Prepare an LPCXpresso55S36.

• Prepare an LCD module (wave-shape 2.8 inch TFT Shield)

• Connect LCD to LPCXpresso55S36 (J102, J132, J92, J122)

• Connect pin 3 of JP64 to D13 of J9 (As flexspi uses pin 1 and 2 of JP64, BK of LCD must jump to D13 of J9.)

• Download image bin file located at .\docs\images to flexspi flash with blhost.exe. To download, follow the steps by NOR
FLASH Config, Erase and Program via blhost tool, as described in LPC553x and LPC55S3x Reference Manuals. Table 3 lists
the destination address in external flash for image bins.

NXP Semiconductors
PowerQuad DSP examples

Digital Signal Processing for NXP LPC553x/LPC55S3x Using PowerQuad, Rev. 1, 25 May 2022
Application Note 5 / 24

Table 3. Image bin file destination address

Image Bin file Destination address

Wel24b.bin 0x08000000

MAdd24b.bin 0x08030000

MInv24b.bin 0x08060000

MMul24b.bin 0x08090000

Tab24b.bin 0x080C0000

• Download code into internal flash of LPC5536/LPC55S36 device and run.

• To switch between different DSP cases one by one, press the sw3 (USR) button.

3.2 Task schedule with display GUI
To involve the separate cases into one project, implement a scheduler in the demo project. Each case is implemented within a
function as the task entry. All the task entries are collected into the task array, cAppLcdDisplayPageFunc[]. Also, a hardware
thread to capture the button is launched.

Then, the MCU is in the sleep mode until waken up by the key interruption. The key value is changed in the ISR of key interruption.
The main loop checks the change of key value and switches to the task with the index (using the key value) in the task list.

/* List of lcd display with tasks. */
void (*cAppLcdDisplayPageFunc[])(void) =
 {
 task_pq_fft_128,
 task_pq_fft_256,
 task_pq_fft_512,
 task_pq_mat_add,
 task_pq_mat_inv,
 task_pq_mat_mul,
 task_pq_fir_lowpass,
 task_pq_fir_highpass,
 task_pq_records
 };
 int main(void)
 {
 ...
 while (1)
 {
 keyValue = App_GetUserKeyValue(); /* keyvalue is used as the index of task. */
 if (keyValue != keyValuePre) /* only switch task when keyvalue is changed. */
 {
 App_DeinitUserKey(); /* disable detecting key when changing lcd display. */
 (*cAppLcdDisplayPageFunc[keyValue])(); /* switch to new page with new task. */
 keyValuePre = keyValue;
 App_InitUserKey(); /* enable detecting key for next event. */
 }
 __WFI(); /* sleep when in idle. would wake up when the key interrupt happens caused by
the touch screen. */
 }
 }

In each task, it executes the PowerQuad computing to finish a simple task and measure the time for critical operations. Then, it
shows the record to the LCD screen module.

NXP Semiconductors
PowerQuad DSP examples

Digital Signal Processing for NXP LPC553x/LPC55S3x Using PowerQuad, Rev. 1, 25 May 2022
Application Note 6 / 24

3.3 Functions of measuring time
Considering that the functions are usually running fast, interrupt-based timing method is not suitable in the demo case. However,
in some test projects specially for measuring, interrupt-based timing method is still available. This method measures plenty times
of the target function and gets the average time for one execution.

In this demo, SysTick timer is chosen as the timer and the code is portable for the other Arm Cortex-M MCU. Use the 24-bit counter
value directly for timing. For the LPC5536/LPC55S36 device which is running at 98 MHz for the clock source of SysTick timer, the
maximum timing period is 171 ms.

/* Systick Start */
#define TimerCount_Start() do { \
 SysTick->LOAD = 0xFFFFFF ; /* Set reload register */\
 SysTick->VAL = 0 ; /* Clear Counter */ \
 SysTick->CTRL = 0x5 ; /* Enable Counting*/ \
} while(0)

/* Systick Stop and retrieve CPU Clocks count */
#define TimerCount_Stop(Value) do { \
SysTick->CTRL =0; /* Disable Counting */ \ Value = SysTick->VAL;/* Load the SysTick Counter Value
/ \ Value = 0xFFFFFF - Value;/ Capture Counts in CPU Cycles*/\ } while(0)

The usage is:

uint32_t calcTime;

TimerCount_Start();
arm_cfft_q31(&instance, gPQFftQ31InOut, 0, 1); /* Calculation. */
TimerCount_Stop(calcTime);

printf("calcTime: %d", calcTime);

3.4 FFT demo cases
There are three FFT cases in the demo: 128 points, 256 points, and 512 points. The below lists tips when using PowerQuad
FFT engine:

• PowerQuad can support 16/32/64/128/256/512 points for FFT computing engine on the hardware.

• The PowerQuad FFT engine scales the input data by 1/N when computing the FFT (and by extension DCT). If an
unscaled result is necessary, multiply the input data (in the INPUT A region) by N manually and scale the inverse FFT
scaled by 1/N. It is correct as per the iDFT formula, so no scaling treatment is needed.

• The FFT engine only looks at the bottom 27 bits of the input word, so no pre-scaling can exceed to avoid the saturation.

• The purely real (prefixed by ‘r’ in API name) and the complex flavors of the functions (prefixed by 'c' in API name) expect
the input data sequences to be arranged in memory as follows.

• If the sequence x = x0, x1 ... xN-1 are real numbers, then the input array in memory is organized as x[N] = {x0, x1, ...
xN-1}.

• If the sequence x = x0, x1 ... xN-1 are complex numbers of the form of (x0_real + i*x0_im), (x1_real + i*x1_im), ...
(xN-1_real + i*xN-1_im), then the input array in memory is organized as x[N] = {x0_real, x0_im, x1_real, x1_im, ...
xN-1_real, xN-1_im}.

• The output sequence is stored in the memory organized as an array of complex numbers where the imaginary parts are
zero for real-valued output data.

When running the PowerQuad Transform engine (include the FFT), only the INPUT A memory handler is used for input and the
OUT memory handler is used for output. For the full information about the usage of memory handler for Transform engine, see
Table 4.

NXP Semiconductors
PowerQuad DSP examples

Digital Signal Processing for NXP LPC553x/LPC55S3x Using PowerQuad, Rev. 1, 25 May 2022
Application Note 7 / 24

Table 4. Usage of memory handlers for FFT engine

Operation Driver
function

Access
type

Input/
Output
data

formats

Input A
region
usage

Input B
region

Output
region
usage

Temp.
region
usage

Fixed
point
input/
output
scalers

Engine

Uses
GPREGs

/
COMPR

EGs?

Complex
FFT Pq_cfft AHB Fix-16,

Fix-32 Input data N.A. Output
data N.A.

Ina_scal
er/

Inb_scal
er/

Out_scal
er

Xform Yes

Real FFT Pq_rfft AHB Fix-16,
Fix-32 Input data N.A. Output

data N.A.

Ina_scal
er/

Inb_scal
er/

Out_scal
er

Xform Yes

Inverse
FFT Pq_ifft AHB Fix-16,

Fix-32 Input data N.A. Output
data N.A.

Ina_scal
er/

Inb_scal
er/

Out_scal
er

Xform Yes

Complex
DCT Pq_cdct AHB Fix-16,

Fix-32 Input data N.A. Output
data N.A.

Ina_scal
er/

Inb_scal
er/

Out_scal
er

Xform Yes

Real DCT Pq_rdct AHB Fix-16,
Fix-32 Input data N.A. Output

data N.A.

Ina_scal
er/

Inb_scal
er/

Out_scal
er

Xform Yes

Inverse
DCT Pq_idct AHB Fix-16,

Fix-32 Input data N.A. Output
data N.A.

Ina_scal
er/

Inb_scal
er/

Out_scal
er

Xform Yes

The PowerQuad APIs used in the demo is compatible as the CMSIS-DSP API. CMSIS-DSP users do not need to change the
existing codes but can run faster with the implementation of PowerQuad.

NXP Semiconductors
PowerQuad DSP examples

Digital Signal Processing for NXP LPC553x/LPC55S3x Using PowerQuad, Rev. 1, 25 May 2022
Application Note 8 / 24

Taking FFT of 128 points as examples:

extern q31_t gPQFftQ31In[APP_PQ_FFT_SAMPLE_COUNT_MAX*2u];
extern q31_t gPQFftQ31Out[APP_PQ_FFT_SAMPLE_COUNT_MAX*2u];
extern q31_t gPQFftQ31InOut[APP_PQ_FFT_SAMPLE_COUNT_MAX*2u];
extern float32_t gPQFftF32In[APP_PQ_FFT_SAMPLE_COUNT_MAX*2u];
extern float32_t gPQFftF32Out[APP_PQ_FFT_SAMPLE_COUNT_MAX*2u];

void task_pq_fft_128(void)
{
 arm_cfft_instance_q31 instance;
 uint32_t i;
 uint32_t calcTime;

 /* Create the input signal. */
 for (i = 0; i < APP_PQ_FFT_SAMPLE_COUNT_128; i++)
 {
 /* real part. */
 gPQFftF32In[i*2] = 1.5f /* direct current. */
 + 1.0f * arm_cos_f32((2.0f * PI / APP_PQ_FFT_PERIOD_BASE) *
i) /* low frequence */
 + 0.5f * arm_cos_f32((4.0f * 2.0f * PI / APP_PQ_FFT_PERIOD_BASE) *
i) /* high frequence */
 ;
 gPQFftF32In[i*2] /= 3.0f; /* make sure the value in (0, 1) */
 /* imaginary part */
 gPQFftF32In[i*2+1] = 0.0f;

 }
 /* PowerQuad FFT can only operate fix-point number. */
 arm_float_to_q31(gPQFftF32In, gPQFftQ31In, APP_PQ_FFT_SAMPLE_COUNT_128*2u);
 for (i = 0u; i < APP_PQ_FFT_SAMPLE_COUNT_128 * 2u; i++)
 {
 gPQFftQ31InOut[i] = gPQFftQ31In[i] >> 5u; /* powerquad fft engine can only accept 27-bit
input data. */
 }

 instance.fftLen = APP_PQ_FFT_SAMPLE_COUNT_128;
 TimerCount_Start(); /* start timing. */
 arm_cfft_q31(&instance, gPQFftQ31InOut, 0, 1); /* computing. */
 TimerCount_Stop(calcTime);

 for (i = 0u; i < APP_PQ_FFT_SAMPLE_COUNT_128 * 2u; i++)
 {
 gPQFftQ31Out[i] = gPQFftQ31InOut[i] « 5u; /* restore the data from 27-bit to 32-bit. */
 }

 arm_q31_to_float(gPQFftQ31Out, gPQFftF32Out, APP_PQ_FFT_SAMPLE_COUNT_128*2u);
arm_cmplx_mag_f32(gPQFftF32Out, gPQFftF32In, APP_PQ_FFT_SAMPLE_COUNT_128);
 /* Todo ...
 * - Record the time.
 * - Display the waveform.
 */
 }

arm_cfft_q31() calls the PowerQuad driver PQ_TransformCFFT()/PQ_TransformIFFT().

 void arm_cfft_q31(const arm_cfft_instance_q31 *S, q31_t *p1, uint8_t ifftFlag, uint8_t
bitReverseFlag)

NXP Semiconductors
PowerQuad DSP examples

Digital Signal Processing for NXP LPC553x/LPC55S3x Using PowerQuad, Rev. 1, 25 May 2022
Application Note 9 / 24

 {
 assert(bitReverseFlag == 1);

 q31_t *pIn = p1;
 q31_t *pOut = p1;
 uint32_t length = S->fftLen;

 PQ_DECLARE_CONFIG;
 PQ_BACKUP_CONFIG;
 PQ_SET_FFT_Q31_CONFIG;

 if (ifftFlag == 1U)
 {
 PQ_TransformIFFT(POWERQUAD_NS, length, pIn, pOut);
 }
 else
 {
 PQ_TransformCFFT(POWERQUAD_NS, length, pIn, pOut);
 }

 PQ_WaitDone(POWERQUAD_NS);

 PQ_RESTORE_CONFIG;
 }

Then the PQ_TransformCFFT() function configures the PowerQuad registers to set the input/output and the length of memory,
then launches the computing by enabling the PowerQuad as CFFT engine. After these operations, the PowerQuad can work.

void PQ_TransformCFFT(POWERQUAD_Type *base, uint32_t length, void *pData, void *pResult)
{
 assert(pData);
 assert(pResult);

 base->OUTBASE = (int32_t)pResult;
 base->INABASE = (int32_t)pData;
 base->LENGTH = length;
 base->CONTROL = (CP_FFT « 4) | PQ_TRANS_CFFT; /* Launch the computing task. */
}

When the computing is done, the INST_BUSY is asserted. Users can use the PQ_WaitDone() function to wait the PowerQuad done.

void PQ_WaitDone(POWERQUAD_Type *base)
{
 /* wait for the completion */
 while ((base->CONTROL & INST_BUSY) == INST_BUSY)
 {
 __WFE(); /* Enter to low power. */
 }
}

When running the demo project, there display pages on the LCD screen module for each FFT demo case are as shown in Figure 2.

NXP Semiconductors
PowerQuad DSP examples

Digital Signal Processing for NXP LPC553x/LPC55S3x Using PowerQuad, Rev. 1, 25 May 2022
Application Note 10 / 24

Figure 2. PowerQuad FFT 128/256/512 points

3.5 Matrix demo cases
The Matrix accelerator engine supports eight operations. Table 5 lists the operations and describes maximum
supported dimensionality.

Table 5. PowerQuad matrix length range

PowerQuad engine Operation Max. row

Matrix

Addition 16 × 16

Subtraction 16 × 16

Hadamard product 16 × 16

Product 16 × 16

Vector dot-product 256 elements

Inversion 9 × 9

Transpose 16 × 16

Scaling 16 × 16

Matrix data are stored in memory row-by-row, arranged like standard C/C++ arrays. So, if two 2 × 2 integer matrices A and B are:

 A = [1 2] B = [5 6]
 [3 4] [7 8]

NXP Semiconductors
PowerQuad DSP examples

Digital Signal Processing for NXP LPC553x/LPC55S3x Using PowerQuad, Rev. 1, 25 May 2022
Application Note 11 / 24

Then the input data is stored in memory arrays as follows:

int MatA[4] = {1, 2, 3, 4};
int MatB[4] = {5, 6, 7, 8};

Table 6 lists the usage of memory handlers for PowerQuad Matrix engine.

Table 6. Usage of memory handlers for Matrix engine

Operation Driver
function

Access type Input/
Output data

formats

Input A
region
usage

Input B
region
usage

Output
region
usage

Temp.
region
usage

Engine

Matrix
addition

Pq_mtx_add AHB FP, Fix-16,
Fix-32

Matrix M1 Matrix M2 Result
matrix

N.A. Matrix

Matrix
substraction

Pq_mtx_sub AHB FP, Fix-16,
Fix-32

Matrix M1 Matrix M2 Result
matrix

N.A. Matrix

Matrix
hadamard
product

Pq_mtx_had
amard

AHB FP, Fix-16,
Fix-32

Matrix M1 Matrix M2 Result
matrix

N.A. Matrix

Matrix
product

Pq_mtx_pro
d

AHB FP, Fix-16,
Fix-32

Matrix M1 Matrix M2 Result
matrix

N.A. Matrix

Matrix invert Pq_mtx_inv AHB FP, Fix-16,
Fix-32

Matrix M1 N.A. Result
matrix

Max. 1024
words

Matrix

Matrix
transpose

Pq_mtx_tra
n

AHB FP, Fix-16,
Fix-32

Matrix M1 N.A. Result
matrix

N.A. Matrix

Matrix scale Pq_mtx_sca
le

AHB FP, Fix-16,
Fix-32

Matrix M1 N.A. (scale
factor in
MISC
register)

Result
matrix

N.A. Matrix

Vector dot
product

Pq_vec_dot
p

AHB FP, Fix-16,
Fix-32

Vector A Vector B Scaler result N.A. Matrix

In the demo case, there are three calculations used for each task:

• task_pq_mat_add() for matrix addition

• task_pq_mat_mul() for matrix multiplication

• task_pq_mat_inv() for matrix inversion

Just like the FFT, the PowerQuad driver implements the CMSIS-DSP API as well. Taking the task_pq_mat_add() as an example,
the usage is the same as CMSIS-DSP API.

#define PQ_MAT_ROW_COUNT_MAX 16u
 #define PQ_MAT_COL_COUNT_MAX 16u
 /* A + B = C. */
 void task_pq_mat_add(void)
 {
 arm_matrix_instance_f32 matrixA;
 arm_matrix_instance_f32 matrixB;
 arm_matrix_instance_f32 matrixC;

NXP Semiconductors
PowerQuad DSP examples

Digital Signal Processing for NXP LPC553x/LPC55S3x Using PowerQuad, Rev. 1, 25 May 2022
Application Note 12 / 24

 float32_t mDataA[PQ_MAT_ROW_COUNT_MAX][PQ_MAT_COL_COUNT_MAX];
 float32_t mDataB[PQ_MAT_ROW_COUNT_MAX][PQ_MAT_COL_COUNT_MAX];
 float32_t mDataC[PQ_MAT_ROW_COUNT_MAX][PQ_MAT_COL_COUNT_MAX];
 uint32_t i, j;
 uint32_t calcTime;

 /* Initialize the matrix. */
 for (i = 0u; i < PQ_MAT_ROW_COUNT_MAX; i++)
 {
 for (j = 0u; j < PQ_MAT_COL_COUNT_MAX; j++)
 {
 mDataA[i][j] = 1.0f * i * PQ_MAT_ROW_COUNT_MAX + j;
 mDataB[i][j] = 1.0f * i * PQ_MAT_ROW_COUNT_MAX + j;
 }
 }
 matrixA.numRows = PQ_MAT_ROW_COUNT_MAX; matrixA.numCols = PQ_MAT_COL_COUNT_MAX; matrixA.pData =
(float32_t *)mDataA; matrixB.numRows = PQ_MAT_ROW_COUNT_MAX; matrixB.numCols = PQ_MAT_COL_COUNT_MAX;
matrixB.pData = (float32_t *)mDataB; matrixC.numRows = PQ_MAT_ROW_COUNT_MAX; matrixC.numCols
= PQ_MAT_COL_COUNT_MAX;
 matrixC.pData = (float32_t *)mDataC;
 /* Calc & Measure. */
 TimerCount_Start();
 arm_mat_add_f32(&matrixA, &matrixB, &matrixC);
 TimerCount_Stop(calcTime);

 /* Todo ...
 * - Record the time.
 * - Display the waveform.
 */
 }

When running the demo project, the display pages on the LCD screen module for each Matrix demo case are as shown in Figure 3.

Figure 3. PowerQuad matrix addition/inversion/multiplication

NXP Semiconductors
PowerQuad DSP examples

Digital Signal Processing for NXP LPC553x/LPC55S3x Using PowerQuad, Rev. 1, 25 May 2022
Application Note 13 / 24

3.6 FIR demo cases
The goal of this demonstration is to create a high-pass/low-pass FIR filter.

There are two demo cases to create different filters:

• task_pq_fir_lowpass() for low-pass filter, to remove the high frequency and get the low frequency from the mixed
signal.

• task_pq_fir_highpass() for high-pass filter, to remove the low frequency and get the high frequency from the mixed
signal.

In the demo cases, Matlab software calculates the taps (coefficients) for filters. Then into the PowerQuad, the hardware helps to
do the filter process to signal automatically. Time consuming mathematical calculation is avoided.

The original signal is mixed with a low frequency signal (a sine wave at 1 kHz) and a high frequency signal (a sin wave at 15 kHz).
Figure 4 is for waveform and Figure 5 is for frequency spectrum.

Figure 4. Waveform of mixed signal

NXP Semiconductors
PowerQuad DSP examples

Digital Signal Processing for NXP LPC553x/LPC55S3x Using PowerQuad, Rev. 1, 25 May 2022
Application Note 14 / 24

Figure 5. Frequency spectrum of mixed signal

To create the coefficients, run the following codes in MatLab.

clear all
close all
Fs=48000;
T=1/Fs;
Lenght=320;
t=(0:Lenght-1)*T;
Input_signal=(sin(2*pi*1000*t)+0.5*sin(2*pi*15000*t)+1.5)/3;
figure;
plot(Input_signal);
res=fft(Input_signal,Lenght);
figure;
f=((0:Lenght-1)/320*Fs);
plot(f,abs(res));
Cutoff_Freq=6000;
Nyq_Freq=Fs/2;
cutoff_norm=Cutoff_Freq/Nyq_Freq;
order=31;
FIR_Coeff=fir1(order,cutoff_norm,'high'); % for high-pass
%FIR_Coeff=fir1(order,cutoff_norm); % for low-pass
Filterd_signal=filter(FIR_Coeff,1,Input_signal);
figure;
plot(Filterd_signal);

fvtool(FIR_Coeff,'Fs',Fs); % generate the coeff and display the diagram

The filter features are:

• Type: high-pass/low-pass

• Order: 32

NXP Semiconductors
PowerQuad DSP examples

Digital Signal Processing for NXP LPC553x/LPC55S3x Using PowerQuad, Rev. 1, 25 May 2022
Application Note 15 / 24

• Sampling frequency: 48 kHz

• Cut-off frequency: 6 kHz

Figure 6, Figure 7, Figure 8, and Figure 9 show the response reports.

Figure 6. Magnitude response of FIR filter

Figure 7. Magnitude response of FIR filter

NXP Semiconductors
PowerQuad DSP examples

Digital Signal Processing for NXP LPC553x/LPC55S3x Using PowerQuad, Rev. 1, 25 May 2022
Application Note 16 / 24

Figure 8. Impulse response of FIR filter

Figure 9. Step response of FIR filter

NXP Semiconductors
PowerQuad DSP examples

Digital Signal Processing for NXP LPC553x/LPC55S3x Using PowerQuad, Rev. 1, 25 May 2022
Application Note 17 / 24

Set the PowerQuad to execute the filter process on MCU, taking a high-pass task as an example.

void task_pq_fir_highpass(void)
{
 uint32_t i;
 uint32_t Fs=48000;

 arm_fir_instance_f32 S;
 float32_t *inputF32, *outputF32;
 uint32_t calcTime;

 inputF32 = &gPQFirF32In[0];
 outputF32 = &gPQFirF32Out[0];

 /* Generate the wave. */
 for (i = 0; i < FIR_INPUT_LEN; i++)
 {
 gPQFirF32In[i] = 1.5
 + 0.5 * arm_sin_f32(2*PI*15000*i/Fs)
 + arm_sin_f32(2*PI*1000*i/Fs) ;
 gPQFirF32In[i] /= 3.0f;
 }
 // ...

 /* Call FIR init function to initialize the instance structure. */
 arm_fir_init_f32(&S,
 NUM_TAPS,
 (float32_t *)&firCoeffs32_highpass[0],
 &firStateF32[0],
 FIR_INPUT_LEN);
 PQ_Init(POWERQUAD_NS);
 pq_config_t pqConfig;

 pqConfig.inputAFormat = kPQ_Float;
 pqConfig.inputAPrescale = 0;
 pqConfig.inputBFormat = kPQ_Float;
 pqConfig.inputBPrescale = 0;
 pqConfig.outputFormat = kPQ_Float;
 pqConfig.outputPrescale = 0;
 pqConfig.tmpFormat = kPQ_Float;
 pqConfig.tmpPrescale = 0;
 pqConfig.machineFormat = kPQ_Float;
 pqConfig.tmpBase = (uint32_t *)0xE0000000;
 PQ_SetConfig(POWERQUAD_NS, &pqConfig);

 /* move the taps into private RAM to improve the performance of operating memory. */
 PQ_MatrixScale(POWERQUAD_NS,
 POWERQUAD_MAKE_MATRIX_LEN(16, NUM_TAPS / 16, 0),
 1.0,
 firCoeffs32_highpass,
 EXAMPLE_PRIVATE_RAM);
 PQ_WaitDone(POWERQUAD_NS);

 /* In the next calculation, data in private ram is used. */
 pqConfig.inputBFormat = kPQ_Float;
 pqConfig.outputFormat = kPQ_Float;
 PQ_SetConfig(POWERQUAD_NS, &pqConfig);

 TimerCount_Start();
 PQ_FIR(POWERQUAD_NS, inputF32, APP_PQ_FIR_SAMPLE_COUNT_240, EXAMPLE_PRIVATE_RAM, NUM_TAPS,

NXP Semiconductors
PowerQuad DSP examples

Digital Signal Processing for NXP LPC553x/LPC55S3x Using PowerQuad, Rev. 1, 25 May 2022
Application Note 18 / 24

outputF32,PQ_FIR_FIR);
 PQ_WaitDone(POWERQUAD_NS);
 //arm_fir_f32(&S, inputF32, outputF32, FIR_INPUT_LEN);
 TimerCount_Stop(calcTime);

 /* Todo ...
 * - Record the time.
 * - Display the waveform.
 */
}

When running the demo cases to execute the filter with PowerQuad hardware, the results are shown in the LCD Screen, as shown
in Figure 10.

Figure 10. PowerQuad FIR High-Pass/Low-Pass filter

4 PowerQuad vs Arm CMSIS-DSP performance
In the demo project, a page is set up for the comparison between the PowerQuad and Arm CMSIS-DSP when they are running the
same tasks. To make a fair comparison, when running the DSP task, to achieve the highest performance, run the Arm CMSIS-DSP
code in RAM and use the dedicated RAM (the private one) for PowerQuad.

Figure 11 shows the snapshot of the screen.

NXP Semiconductors
PowerQuad vs Arm CMSIS-DSP performance

Digital Signal Processing for NXP LPC553x/LPC55S3x Using PowerQuad, Rev. 1, 25 May 2022
Application Note 19 / 24

Figure 11. Running time for PowerQuad vs Arm CMSIS-DSP

Figure 12 summarizes the data.

NXP Semiconductors
PowerQuad vs Arm CMSIS-DSP performance

Digital Signal Processing for NXP LPC553x/LPC55S3x Using PowerQuad, Rev. 1, 25 May 2022
Application Note 20 / 24

Figure 12. Running time data table for PowerQuad vs Arm CMSIS-DSP

5 Revision history

Rev. Date Description

0 25 December 2021 Initial release

1 25 May 2022 Replace LPC55S36 with LPC553x/LPC55S3x

NXP Semiconductors
Revision history

Digital Signal Processing for NXP LPC553x/LPC55S3x Using PowerQuad, Rev. 1, 25 May 2022
Application Note 21 / 24

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages
are based on tort (including negligence), warranty, breach of contract or any
other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance with
the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without limitation
specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the
publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical
or safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental damage.
NXP Semiconductors and its suppliers accept no liability for inclusion and/or
use of NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of customer’s
third party customer(s). Customers should provide appropriate design and
operating safeguards to minimize the risks associated with their applications
and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary testing
for the customer’s applications and products using NXP Semiconductors
products in order to avoid a default of the applications and the products or of the
application or use by customer’s third party customer(s). NXP does not accept
any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products
are sold subject to the general terms and conditions of commercial sale,
as published at http://www.nxp.com/profile/terms, unless otherwise agreed
in a valid written individual agreement. In case an individual agreement
is concluded only the terms and conditions of the respective agreement
shall apply. NXP Semiconductors hereby expressly objects to applying the
customer’s general terms and conditions with regard to the purchase of NXP
Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be
subject to export control regulations. Export might require a prior authorization
from competent authorities.

Suitability for use in non-automotive qualified products — Unless this
data sheet expressly states that this specific NXP Semiconductors product
is automotive qualified, the product is not suitable for automotive use.
It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in automotive
applications to automotive specifications and standards, customer (a) shall use
the product without NXP Semiconductors’ warranty of the product for such
automotive applications, use and specifications, and (b) whenever customer
uses the product for automotive applications beyond NXP Semiconductors’
specifications such use shall be solely at customer’s own risk, and (c) customer
fully indemnifies NXP Semiconductors for any liability, damages or failed
product claims resulting from customer design and use of the product for
automotive applications beyond NXP Semiconductors’ standard warranty and
NXP Semiconductors’ product specifications.

NXP Semiconductors
Legal information

Digital Signal Processing for NXP LPC553x/LPC55S3x Using PowerQuad, Rev. 1, 25 May 2022
Application Note 22 / 24

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio,
CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, μVision,
Versatile — are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be
protected by any or all of patents, copyrights, designs and trade secrets. All
rights reserved.

Airfast — is a trademark of NXP B.V.

Bluetooth — the Bluetooth wordmark and logos are registered trademarks
owned by Bluetooth SIG, Inc. and any use of such marks by NXP
Semiconductors is under license.

Cadence — the Cadence logo, and the other Cadence marks found at
www.cadence.com/go/trademarks are trademarks or registered trademarks of
Cadence Design Systems, Inc. All rights reserved worldwide.

CodeWarrior — is a trademark of NXP B.V.

ColdFire — is a trademark of NXP B.V.

ColdFire+ — is a trademark of NXP B.V.

EdgeLock — is a trademark of NXP B.V.

EdgeScale — is a trademark of NXP B.V.

EdgeVerse — is a trademark of NXP B.V.

elQ — is a trademark of NXP B.V.

FeliCa — is a trademark of Sony Corporation.

Freescale — is a trademark of NXP B.V.

HITAG — is a trademark of NXP B.V.

ICODE and I-CODE — are trademarks of NXP B.V.

Immersiv3D — is a trademark of NXP B.V.

I2C-bus — logo is a trademark of NXP B.V.

Kinetis — is a trademark of NXP B.V.

Layerscape — is a trademark of NXP B.V.

Mantis — is a trademark of NXP B.V.

MIFARE — is a trademark of NXP B.V.

MOBILEGT — is a trademark of NXP B.V.

NTAG — is a trademark of NXP B.V.

Processor Expert — is a trademark of NXP B.V.

QorIQ — is a trademark of NXP B.V.

SafeAssure — is a trademark of NXP B.V.

SafeAssure — logo is a trademark of NXP B.V.

StarCore — is a trademark of NXP B.V.

Synopsys — Portions Copyright © 2021 Synopsys, Inc. Used with permission.
All rights reserved.

Tower — is a trademark of NXP B.V.

UCODE — is a trademark of NXP B.V.

VortiQa — is a trademark of NXP B.V.

NXP Semiconductors
Legal information

Digital Signal Processing for NXP LPC553x/LPC55S3x Using PowerQuad, Rev. 1, 25 May 2022
Application Note 23 / 24

mailto:PSIRT@nxp.com
http://www.cadence.com/go/trademarks

Please be aware that important notices concerning this document and the product(s) described
herein, have been included in section 'Legal information'.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 25 May 2022
Document identifier: AN13498

	Contents
	1 PowerQuad introduction
	2 PowerQuad hardware
	2.1 PowerQuad computing features
	2.2 PowerQuad bus interfaces
	2.3 PowerQuad memory handlers

	3 PowerQuad DSP examples
	3.1 Hardware environment setup
	3.2 Task schedule with display GUI
	3.3 Functions of measuring time
	3.4 FFT demo cases
	3.5 Matrix demo cases
	3.6 FIR demo cases

	4 PowerQuad vs Arm CMSIS-DSP performance
	5 Revision history
	Legal information

