
Freescale Semiconductor
Application Note

Document Number: AN4406
Rev. 0, 12/2011

Contents

Introduction . 1
1.1 EzPort . 1
1.2 KwikStik . 2
1.3 MQX . 2
EzProg features. 2
Hardware description. 3

3.1 Target device signal connections 3
3.2 Control signals. 3
3.3 TWRPI-EzPORT user header 3
3.4 Modes of operation . 4
Software description . 4

4.1 Task list . 4
4.2 File list . 5
4.3 Programming scripts . 6
Typical use example . 9

5.1 Preparations . 9
5.2 KwikStik firmware upload 10
5.3 Preparing the programming files 10
5.4 Connecting to the target system 16
5.5 Programming. 17
Modifying the code . 17

6.1 Portability guide. 17
6.2 Potential improvements . 17
Bibliography. 18
Conclusion. 18

KwikStik-based EzPort
programmer
by: Witek Ewert, EMEA, FAE Team
1 Introduction
This document explains the use of the Kinetis KwikStik
development tool as a memory programmer (EzProg) for
Freescale MCUs which support memory access through
the EzPort interface.

1.1 EzPort

EzPort is a serial memory interface present in Kinetis,
ColdFire+ and ColdFire v2 devices. It allows the entire
contents of the target’s memory to be erased,
programmed and read in-system through a simple
SPI-compatible interface. An external controller can
hold the target microcontroller in reset, and by asserting
low a mode-select pin (~EZP_CS) and releasing the
reset, the microcontroller enters a special programming
mode called EZP. When in the mode, a range of
commands may be sent to the microcontroller to control
a full suite of programming tasks.

1

2
3

4

5

6

7
8

© Freescale Semiconductor, Inc., 2011. All rights reserved.

EzProg features
1.2 KwikStik

KwikStik is a low-cost, self-contained development tool for Freescale’s Kinetis brand of Cortex-M4 32-bit
MCUs. It features a Kinetis MK40DX256 MCU, which is in-system programmable via an on-board USB
J-Link programmer, a MicroSD card slot, dot-matrix LCD and a secondary USB connector capable of
OTG operation. The functionality of KwikStik can be extended by either its edge connector to a TOWER
system, or by using the two, 20-pin TWRPI (“Tower peripheral interface” or “twippy”) headers on the
back side of the PCB.

1.3 MQX

Freescale MQX is a real-time operating system for Kinetis, ColdFire, ColdFire+ and Power Architecture.
Among its numerous features, MQX provides task management, I/O device file abstraction and file
management compatible with the FAT filesystem. The use of MQX greatly accelerated the development
of this project, with its readily available drivers for USB Device, MicroSD and SPI peripherals.

MQX is available from Freescale as a complimentary download from freescale.com/mqx.

2 EzProg features
• Runs on an unmodified KwikStik (hardware revision 5 or greater1)

• Supports Kinetis, ColdFire+2, ColdFire v2

• Connects to the target system via standard 20-pin CF+ EZP/Cortex Debug header
(TWRPI-EzPORT adapter board required)

• Stand-alone operation – MicroSD card used for programming script and memory image storage

• Accepts standard Motorola S-Record, Intel HEX and raw binary memory image files

• Configuration via human-readable programming script

• Windows utility to create programming scripts

• Memory commands: mass erase, blank check, program, verify

1.The hardware revision number is printed on the PCB on the top (LCD) side of the board, in the lower right corner.
2.See ColdFire+ chip errata.
KwikStik-based EzPort programmer, Rev. 0

Freescale Semiconductor2

https://www.freescale.com/mqx

Hardware description
3 Hardware description

3.1 Target device signal connections

EzPort programming signal assignment. L and R are the left and right TWRPI connectors, respectively.

• RESET – active low, resets the target

• EZP_CS – Chip select for EzPort SPI. If held low during reset, the target will enter EZP mode.

• EZP_CK – SPI clock

• EZP_DI – Serial data sent from the programmer to the target.

• EZP_DO – Serial data received from the target by the programmer.

3.2 Control signals

• READY – output, logic high indicates that EzProg is ready to run the programming script.

• FAIL – output, logic high indicates an error during the last run of the programming script.

• GO – input, if READY is high, a positive (rising) edge runs the programming script and reverts
FAIL to low.

3.3 TWRPI-EzPORT user header

The 100 mil 2x7 pin header on the TWRPI-EzPORT PCB can be used to connect the EzPort signals to the
target device, to supply either 3.3V or 5V to the target from KwikStik, and for ATE to control the
programming process in an industrial environment.

Table 1. Target device signal connections

K40 pin TWRPI pin Target signal 0.050 EZP HDR pin

PTA6 L20 RESET_TWRPI RESET 10

PTA14/SPO0_PCS0 R11 SPI: SS EZP_CS 9

PTA15/SPI_SCK R12 SPI: CLK EZP_CK 4

PTA16/SPI0_SOUT R10 SPI: MOSI EZP_DI 8

PTA17/SPI0_SIN R9 SPI: MISO EZP_DO 6

Table 2. Control signal assignment

Signal Name K40 pin TWRPI pin

READY PTA10 R15 GPIO0

FAIL PTA11 R16 GPIO1

GO PTA12 R17 GPIO2
KwikStik-based EzPort programmer, Rev. 0

Freescale Semiconductor 3

Software description
3.4 Modes of operation

EzProg can operate in two modes – memory programmer and MicroSD card reader. In memory
programmer mode, the device is connected to a 5V voltage source through USB_JLINK Micro-USB
connector (right-hand side of the KwikStik when facing the LCD). The device can also be connected to a
PC through USB_K40 (left-hand side), in which case it functions as a USB mass storage device card
reader.

4 Software description
The firmware for EzProg was written to run under MQX 3.7, in C, using IAR Embedded Workbench 6.21.
Project files for CodeWarrior for MCU version 10.1 are also available.

The KwikStik BSP has been modified for this project, as the BSP available at the time of writing supported
KwikStik Revision 4. A clone of the modified BSP is provided with the project files.

4.1 Task list
• Startup_Task – Initializes the MicroSD card (which includes waiting for a card to be inserted) and

the LCD controller. Detects which USB port is connected to a voltage source and runs either
MSD_Task or EZP_Task

• MSD_Task - acts as a Mass Storage USB Device card reader

• EZP_Task – runs the programming script

Table 3.

Pin Signal

1 TWRPI_5V

2 TWRPI_3V3

3 TGT_5V

4 TGT_3V3

5 EZP_RST

6 EZP_CS

7 EZP_DI

8 EZP_CLK

9 EZP_DO

10 GND

11 READY

12 FAIL

13 GO

14 GND
KwikStik-based EzPort programmer, Rev. 0

Freescale Semiconductor4

Software description
4.2 File list
• tasks.c – includes the MQX task list

Dependencies: startup.h, msd.h, ezp.h

Portability: This file contains no hardware-dependent code.

startup.c / startup.h – The start-up function. Detects the operating mode based on USB voltage
sensing and runs either the EZP task or the MSD task.

Dependencies: ezp.h, msd.h

Portability: USB voltage detection is KwikStik-specific. The word ‘PORTABILITY’ is used in the
comments to indicate KwikStik-specific code.

• msd.c / msd.h – USB mass storage device task.

Dependencies: usb_descriptor.h, microsd.h, debug.h

Portability: MQX with USB device support required.

• microsd.c / microsd.h – MicroSD card support

Dependencies: debug.h

Portability: MQX and MCU with ESDHC controller required.

• cfg.c / cfg.h – Config file support

Dependencies: None

Portability: These files contain no hardware-dependent code.

• srec.c / srec.h – SREC file parser

Dependencies: None

Portability: These files contain no hardware-dependent code.

• ezp.c / ezp.h – EzPort programmer task

Dependencies: misc.h, debug.h, srec.h, microsd.h, cfg.h

Portability: These files contain hardware-dependent code. The word ‘PORTABILITY’ is used in
the comments to indicate KwikStik-specific code.

• debug.c / debug.h – These files specify the global error reporting function.

Dependencies: misc.h

Portability: This file contains no hardware-dependent code.

• misc.c / misc.h – implement the user interface.

Dependencies: debug.h, LCD, buzzer and touch sense drivers

Portability: All the Misc_* functions are KwikStik-specific and need to be re-written for use on a
different board. The word ‘PORTABILITY’ is used in the comments to indicate KwikStik-specific
bare-metal I/O code.

• usb_descriptor.c / usb_descriptor.h – USB descriptors and functions for the USB mass storage
device class. These files were copied from the <MQX root>\usb\device\examples\msd\disk
project.

Dependencies: None

Portability: Portable to all systems with a USB device controller supported by MQX.
KwikStik-based EzPort programmer, Rev. 0

Freescale Semiconductor 5

Software description
4.3 Programming scripts

A programming script is a text file describing all user-configurable programming settings and the sequence
to be followed when the script is run for every target device. The syntax of EzProg programming scripts
is compatible with the one used for Microsoft Windows .INI files.

4.3.1 Syntax

4.3.1.1 General

• Whitespace characters are ‘ ‘ (0x20, space), CR (0x0D, carriage return) and tab. They are ignored
at the beginning and end of a line, before and after variable names, section names and values.

• New lines are signified by the LF (0x0A, line feed) character. As CR is ignored, files following
both CRLF and LF newline conventions are accepted.

• Special characters are ‘”’, ‘[‘, ‘]’, ‘=’, ‘;’.

4.3.1.2 Sections

A programming script section begins with a line containing the section name in square brackets (‘[‘, ‘]’)
and ends when the next section begins or EOF (end of file) is encountered.

Example:

[section]

Specifying a section of unknown type will cause an error.The first statement not being a comment, must
specify the name of the first section in the file. Section names are case-sensitive.

4.3.1.3 Variable assignments

Sections contain a list of variables with values assigned to them. Assignment is represented by the equality
sign ‘=’. A value can be either an integer or a string. An integer can be decimal or hexadecimal, with
hexadecimal integers beginning with ‘0x’. The maximum size of integers is 32 bits. Strings must be
delimited by ‘”’ (double quotation marks).

Examples:
foo = 12
hexfoo = 0x0C
bar = “kats”

Variable names and string values are case-sensitive.

4.3.1.4 Comments

A comment begins with a semicolon and takes up the whole line. Comments appended at the end of other
statements are illegal.
KwikStik-based EzPort programmer, Rev. 0

Freescale Semiconductor6

Software description
4.3.2 Functional description

4.3.2.1 [target]

The [target] section describes the device to be programmed and general programming settings. This must
be the first section of the programming script. There may be only a single [target] section.

Variables

Table 4. Variables

Name Type Description

image string File name of the SREC
memory image to be
programmed to the device

architecture string Target architecture, valid
options are “Kinetis”,
“ColdFire”, “ColdFire+”.

flash size integer The size of the target
device’s Flash memory

sector size integer The Flash sector size for the
device, 0 to disable sector
boundary check when
writing. Default: 0

flash program block integer Length of individual EzPort
transfers. Default: 256

baud rate integer SPI clock rate. Default:
10000

reset delay A integer Delay, in milliseconds,
before asserting RESET
after setting EZP_CS.
Default: 100

reset delay B integer Duration, in milliseconds, of
the low RESET pulse.
Default: 100

reset delay C integer Delay, in milliseconds, after
RESET. Default: 100

touch button integer The touch-sense button to
use to run the programming
script (1-6) or zero to disable
touch sensing. Default: 0

buzzer integer Non-zero to enable the
on-board buzzer. Default: 0

coldfire div integer ColdFire v2 clock divider
value. Default: 62

coldfire prdiv8 integer Non-zero to enable ColdFire
v2 8:1 clock pre-divider.
Default: 0
KwikStik-based EzPort programmer, Rev. 0

Freescale Semiconductor 7

Software description
Figure 1. EZP Reset timing. For a normal reset, EZP_CS is driven high.

4.3.2.2 [reset]

When a [reset] section is encountered, EzProg performs a RESET on the device, after which either the user
code is run on the target, or the target enters EZP mode and can be programmed.

4.3.2.3 [mass erase]

Erases the contents of the Flash memory on the device.

There are no variables for this section.

4.3.2.4 [blank check]

Reads the Flash memory and checks if it has been erased. Some locations are skipped depending on the
selected architecture:

If a value different than 0xFF is read, a programming failure is indicated. There are no variables for this
section.

Table 5. Variables

Name Type Description

ezp integer If non-zero, the target enters
EzPort mode after reset
(EZP_CS is held low).

Table 6. Skipped flash locations

Architecture Location(s)

Kinetis 0x400 – 0x40C

ColdFire v2 0x400 – 0x417

ColdFire+ 0x400 – 0x40F
KwikStik-based EzPort programmer, Rev. 0

Freescale Semiconductor8

Typical use example
4.3.2.5 [program]

Programs the SREC image, specified in the [target] section, to the device. No verification is performed
during programming.There are no variables for this section.

4.3.2.6 [verify]

Reads the contents of the Flash memory and compares it to the contents of the SREC image file specified
in the [target] section. If the image file and Flash contents do not match, a programming failure is
indicated.

There are no variables for this section.

5 Typical use example

5.1 Preparations

You will need:

• PC running Windows and with IAR Embedded Workbench installed

• KwikStik Rev. 5 or later

• MicroSD card – a 2GB SanDisk card was used.

• USB A to micro-B cable

• TWRPI-EzPORT board (or a custom-made programming cable)

• A target board with a Kinetis, ColdFire V2 or ColdFire+ MCU.

• 20-way ribbon cable with 50mil IDC connectors at both ends – for programming Kinetis and
ColdFire+ TWR boards

• Jumper wires for other systems

• A jumper
KwikStik-based EzPort programmer, Rev. 0

Freescale Semiconductor 9

Typical use example
Figure 2. KwikStik LCD view

5.2 KwikStik firmware upload
1. Extract the EzProg binary package to a convenient location. The following two folders will be

visible:

• EzProg_fw - contains the KwikStik firmware

• EzProg Wizard – contains a Windows tool for preparing the programming files

2. Connect the right-hand side KwikStik USB port (J-Link) to your PC.

3. Open the IAR project for flashing the KwikStik, Ezprog_fw\ezprog.eww. Click the ‘Download and
Debug button on the toolbar. Press Ctrl+Shift+D to end the debugging session and close IAR.

5.3 Preparing the programming files
4. Remove the USB plug from the J-Link USB port on the KwikStik and connect it to the port on the

left (K40).

5. KwikStik should display “CARD” on the LCD screen. Insert the memory card to the MicroSD slot.
Windows will detect a new USB mass storage device and the LCD screen goes blank. When
Windows has installed the new USB mass storage device, the USB icon is displayed in the top
left-hand corner of the LCD screen.

6. Run the EzProg Wizard - ezprog_gui.exe. Click [Next>].
KwikStik-based EzPort programmer, Rev. 0

Freescale Semiconductor10

Typical use example
Figure 3. First step running the ExProg Wizard

7. The wizard will show a list of all removable drives on the system. Choose the logical drive which
corresponds to KwikStik. You can also specify a custom path to copy the generated files to instead
remember to copy the files to the root folder of the memory card afterwards. You may decide to
store a selection of firmware images to the memory card, and promote one to the root folder when
you are ready to program that image. Click [Next>].
KwikStik-based EzPort programmer, Rev. 0

Freescale Semiconductor 11

Typical use example
Figure 4. Destination file in EzProg Wizard

8. Click [Browse] and select the Flash image file to program to the device. If the file extension is not
on the list, you need to pick the proper memory image format from the drop-down list. If you select
a format that is not SREC format (for example BIN or HEX), EzProg will convert the file to SREC
format using objcopy.exe. Click [Next>].
KwikStik-based EzPort programmer, Rev. 0

Freescale Semiconductor12

Typical use example
Figure 5. Memory image location in EzProg

9. Choose the target architecture and Flash memory size. You may also want to increase the SPI baud
rate to 100000. In this example, EzProg is being used to program a Kinetis MK60DN512.
KwikStik-based EzPort programmer, Rev. 0

Freescale Semiconductor 13

Typical use example
Figure 6. Target in EzProg

If the target is a ColdFire V2 MCU, you will need to enter the clock divider settings. The method
to calculate these values is described in ColdFire V2 reference manuals, refer to ‘Writing the
CFMCLKD Register’, ‘ColdFire Flash Module (CFM)’ chapter available at www.freescale.com.

If ‘Page boundary check’ is enabled, an attempt to write across a page boundary would result in an
error. This option is only usable with Kinetis and ColdFire+ targets.

The ‘Program block length’ is the maximum number of bytes that can be read from or written to
the memory in a single EZP transfer. It must be a multiple of the size of the smallest
write-addressable memory unit (write address alignment) and must divide the page size without a
remainder if write requests must fit within one page.

Click [Next>].

10. Choose the actions to be performed each time a target device is about to be programmed. The
device will reset into EzPort mode before any of these actions are performed.

You can specify if programming is to be started when a touch-button is activated, in addition to
when there is a rising edge on the gpio GO input. If you turn on touch sensing, you may also want
to enable the on-board buzzer for a better user experience.
KwikStik-based EzPort programmer, Rev. 0

Freescale Semiconductor14

www.freescale.com
www.freescale.com
www.freescale.com

Typical use example
Figure 7. Actions and activation in EzProg

Click ‘Next’.

11. This page lets you review the programming script and modify it if necessary.
KwikStik-based EzPort programmer, Rev. 0

Freescale Semiconductor 15

Typical use example
Figure 8. Summary and generate window

After you click ‘Generate’, the programming script and memory image file will be written to the KwikStik
(or to the path you specified in step 7). The EzProg firmware on the KwikStik will only process S-Record
files, so objcopy.exe will be run to convert binary and HEX files to SREC.

12. Click ‘Safely remove hardware…’ in the wizard. Stop the mass-storage device mounted in Step 7
and disconnect it from the PC.

5.4 Connecting to the target system
13. Connect KwikStik to the target system. You can either use the EZP 0.050in. header and an IDC

ribbon cable, or the 100mil header and connect each signal individually. See the table in
Section 3.3, “TWRPI-EzPORT user header for the header pinout. If using the EZP header, install
a jumper on the 100mil header:

You can also apply 5V to pin 3 or 3.3V to pin 4 to power the target separately.

Table 7.

Pins Target voltage source

1-3 KwikStik, 5V

2-4 KwikStik, 3.3V

None Target is self powered
KwikStik-based EzPort programmer, Rev. 0

Freescale Semiconductor16

Modifying the code
5.5 Programming
14. Connect the right-hand side KwikStik USB port (J-Link) to a PC or a 5V USB mains adapter.

KwikStik should display ‘READY’ on the LCD. Press the touch-button you had selected in step
10 or momentarily short the pins 13 and 14 on the user header. The green LED will come off and
the programmer will perform the actions selected in step 10.

If the device has been programmed successfully, the green LED will come back on.

If programming fails, the red LED will come on along with the green RDY led, and the word
‘FAIL’ will be displayed on the LCD.

If an error occurs, only the red LED will come on and you will see ‘ERROR’ on the LCD.

6 Modifying the code
A source package containing all project files for the programmer firmware and the Wizard are available
for download from the Freescale website.

The KwikStik firmware was developed with IAR Embedded Workbench. It runs under MQX 3.7 operating
system with the KwikStik patch applied to it. The original BSP for KwikStik needed to be modified, so the
project uses a cloned BSP under the name ‘kwikstikk40x256_ezprog’.

EzProg Wizard was written in Microsoft Visual C++ .NET 2008. It is a Windows Forms application.

6.1 Portability guide

6.1.1 Porting to another MQX system

The word ‘PORTABILITY’ is used in the comments to indicate parts of the code which may need to be
modified when porting to a different board/platform. Refer to Section 4.2, “File list in this document for
portability details.

6.1.2 Re-using the code on a non-MQX system

Files which can be re-used:

• ezp.c / ezp.h – remove MicroSD_Mount, implement GPIO support and SPI as file I/O. Add
templates for Misc_* functions.

• cfg.c / cfg.h, srec.c / srec.h – change MQX_FILE_PTR to FILE*.

6.2 Potential improvements
• Add support for industry-standard I2C and SPI memories. 24Cxx EEPROM code for MQX can be found in

<MQX root>\mqx\examples\i2c\. SPI memories are very similar to EZPort devices and few changes need
to be made to program them.

• Add USB mass storage host controller support. This may require either replacing the diode
blocking KwikStik to USB-K40 current with a shunt, or building a USB connector adapter to
KwikStik-based EzPort programmer, Rev. 0

Freescale Semiconductor 17

Bibliography
bypass the diode. USB class code for MSD host is available in <MQX
root>\mfs\examples\mfs_usb.

• Security features, e.g. programming a serial number to the target’s write-once memory, then
calculating a CRC and programming it to the Flash.

• Blank check can be significantly accelerated by using an FCCOB command instead of reading the
entire memory over SPI.

7 Bibliography
• MCF51F128 RM

• TWR-MCF51JF128 UG

• MCF52259 RM

• TWR-MCF5225x UG

• K60N512 RM

• TWR-K6N512 UG

• TWR-K6N512 schematic

• KwikStik UG

• KwikStik schematic

8 Conclusion
The EzPort programmer described in this Application Note is a simple, yet powerful way to device
program supported Kinetis, ColdFire and ColdFire+ microcontrollers. By developing the firmware to run
on a KWIKSTIK-K40 development board, Freescale has provided route to a very low-cost programmer.
The firmware supports many of the common tasks required for production programming, but the firmware
is provided in source form so that the user can make further enhancements. It is necessary to use the
MK40X256 SPI peripheral to implement the EzPort communication. This peripheral terminates at one of
the TWRPI connectors on the rear of the KwikStik, and so a simple adaptor PCB has been developed. The
PCB simply translates the TWRPI footprint to a standard 20-way Samtec FTSH header for a Cortex Debug
header cable. The schematic and PCB design files are published to allow the user to manufacture a similar
PCB, or to modify the PCB for a custom application. Freescale MQX has been used to develop the
firmware, the MFS file system and USB Device stack are a key part of the EzProg solution. Using a
real-time operating system, and a task-based approach to the firmware greatly reduced the software
development time.
KwikStik-based EzPort programmer, Rev. 0

Freescale Semiconductor18

	1 Introduction
	1.1 EzPort
	1.2 KwikStik
	1.3 MQX

	2 EzProg features
	3 Hardware description
	3.1 Target device signal connections
	3.2 Control signals
	3.3 TWRPI-EzPORT user header
	3.4 Modes of operation

	4 Software description
	4.1 Task list
	4.2 File list
	4.3 Programming scripts
	4.3.1 Syntax
	4.3.2 Functional description

	5 Typical use example
	5.1 Preparations
	5.2 KwikStik firmware upload
	5.3 Preparing the programming files
	5.4 Connecting to the target system
	5.5 Programming

	6 Modifying the code
	6.1 Portability guide
	6.1.1 Porting to another MQX system
	6.1.2 Re-using the code on a non-MQX system

	6.2 Potential improvements

	7 Bibliography
	8 Conclusion

