
1 FlexTimer introduction
The FlexTimer (FTM) on Kinetis MCU is built upon a very
simple timer, HCS08 Timer PWM Module (TPM), used for
many years on Freescale 8-bit microcontrollers. But the FTM
extends the functionality on input capture, output compare,
and especially the generation of PWM signals to meet the
demands of motor control, digital lighting solutions, and
power conversion. However, it can be backward compatible
with TPM by configuring the FTMx_MODE register.

The FTM module is powerful and flexible when used to
generate PWM signals required in some applications. The
users can get the desired control signals by changing the
registers FTMx_MOD, FTMx_CNTIN, FTMx_CnV,
FTMx_OUTMASK, FTMx_INVCTRL, and
FTMx_SWOCTRL. But any writes to these registers will be
latched in the write buffer first because of the hardware
structure. Therefore, updating these registers requires a lot of
attention.

This application note covers the whole details about the FTM
synchronization, including the Legacy and Enhanced PWM
Synchronization mode. At the end, example code is given
showing both modes in both software and hardware trigger
ways.

Freescale Semiconductor Document Number:AN4560

Application Note Rev. 0, 8/2012

PWM Synchronization Using
Kinetis Flextimers
by: Xianhu Gao

Automotive and Industrial Solutions Group

© 2012 Freescale Semiconductor, Inc.

General Business Information

Contents

1 FlexTimer introduction...1

2 FlexTimer synchronization and registers
concerned..2

3 Synchronization principle..3

4 Example code..19

5 Conclusion...23

6 References...23

2 FlexTimer synchronization and registers concerned
The FTM module offers PWM synchronization mechanism which provides an opportunity to update the MOD, CNTIN,
CnV, OUTMASK, INVCTRL and SWOCTRL registers with their buffered value and force the FTM counter to the CNTIN
register value.

NOTE
• It is expected that the PWM synchronization be used only in Combine mode.
• The Legacy PWM Synchronization (SYNCONF[SYNCMODE] = 0) is a subset of

the Enhanced PWM Synchronization (SYNCONF[SYNCMODE] = 1). Thus, it is
expected that only the Enhanced PWM Synchronization be used.

The control registers of the FTM module, associated with the PWM synchronization are as below:
• FTMx_MODE, in which the FTMEN and PWMSYNC fields are concerned.

Generally when using PWM function in Combine mode, FTMEN must be set as 1, or it is in TPM Compatible mode
and can only offer basic PWM functions. In TPM mode (FTMEN = 0), the CNTIN, MOD, and CnV registers are
updated simply.

• CNTIN register is updated at the next system clock after CNTIN was written.
• MOD register is updated after it is written and the FTM counter changes from MOD to CNTIN or MOD –1

according to SC[CPWMS].
• CnV register is updated after it is written and the FTM counter changes from MOD to CNTIN (EPWM mode) or

MOD –1 (CPWM mode). In Output Compare mode, the CnV register is updated on the next FTM counter change
after it is written.

PWMSYNC selects which triggers can be used by MOD, CnV, OUTMASK, and FTM counter synchronization,and
configures the synchronization only when SYNCONF[SYNCMODE] = 0, or in Legacy mode which is not
recommended in Kinetis.

• FTMx_SYNC
It selects the software or hardware trigger source, load point and synchronization mode to OUTMASK and FTM
counter.

NOTE
• The software trigger (SWSYNC field) and hardware triggers (TRIG0,

TRIG1, and TRIG2 bits) have a potential conflict if used together when
SYNCONF[SYNCMODE] = 0. It is recommended using only hardware or
software triggers, but not both at the same time, otherwise unpredictable
behavior is likely to happen.

• The selection of the the maximum and the minimum loading point enabled by
CNTMAX and CNTMIN fields, is intended to provide the update of MOD,
CNTIN, and CnV registers across all enabled channels simultaneously. The
use of the loading point selection together with SYNCONF[SYNCMODE] =
0 and hardware trigger selection (TRIG0, TRIG1, or TRIG2 bits) is likely to
result in unpredictable behavior.

• FTMx_COMBINE, in which the SYNCEN and COMBINE fields are concerned.

The recommended usage is in Combine mode. So, COMBINE must be set. SYNCEN enables the synchronization
function to registers C(n)V and C(n+1)V.

• FTMx_SYNCONF

This register selects the PWM synchronization configuration, SWOCTRL, INVCTRL and CNTIN registers
synchronization, if FTM clears the TRIGj bit (where j = 0, 1, 2) when the hardware trigger j is detected.

• FTMx_PWMLOAD

FlexTimer synchronization and registers concerned

PWM Synchronization Using Kinetis Flextimers, Rev. 0, 8/2012

2 Freescale Semiconductor, Inc.
General Business Information

This register enables the loading of the MOD, CNTIN, C(n)V, and C(n+1)V registers with the values of their write
buffers when the FTM counter changes from the MOD register value to its next value or when a channel (j) match
occurs. A match occurs for the channel (j) when FTM counter = C(j)V.

3 Synchronization principle
The Kinetis MCU offers two kinds of trigger source for synchronization:

• Software trigger: Software trigger source is SYNC[SWSYNC].
• Hardware trigger: Hardware trigger can be selected from CMPx output, PDB trigger output, FTM_FLT pin, or

SYNC[TRIG0], SYNC[TRIG1], and SYNC[TRIG2] fields. The hardware trigger source varies for different devices,
and can be checked from device chip configuration.

3.1 Hardware trigger
Hardware trigger signal inputs of the FTM module are enabled when SYNC[TRIGn] = 1, where n = 0, 1 or 2, corresponding
to each one of the input signals, respectively. The hardware trigger input n is synchronized by the system clock. The PWM
synchronization with hardware trigger is initiated when a rising edge is detected at the enabled hardware trigger inputs.

• If SYNCONF[HWTRIGMODE] = 0, SYNC[TRIGn] is cleared when 0 is written to it, or when the trigger n event is
detected.

• If SYNCONF[HWTRIGMODE] = 1, SYNC[TRIGn] is cleared only when 0 is written to it.

Figure 1. Hardware trigger event with SYNCONF[HWTRIGMODE] = 0

NOTE
It is expected that SYNCONF[HWTRIGMODE] be 1 only with enhanced PWM
synchronization when SYNCONF[SYNCMODE] = 1.

Synchronization principle

PWM Synchronization Using Kinetis Flextimers, Rev. 0, 8/2012

Freescale Semiconductor, Inc. 3
General Business Information

3.2 Software trigger
A software trigger event occurs when 1 is written to SYNC[SWSYNC]. SYNC[SWSYNC] is cleared when 0 is written to it,
or when the PWM synchronization initiated by the software event, is completed.

• In Legacy PWM Synchronization mode (when SYNCONF[SYNCMODE] = 0)
• When MODE[PWMSYNC] = 1, or MODE[PWMSYNC] = 0 and SYNC[REINIT] = 0, SYNC[SWSYNC] is

cleared at the next selected loading point (See Boundary cycle and loading points) after the software trigger event
has occurred.

• When MODE[PWMSYNC] = 0 and SYNC[REINIT] = 1, SYNC[SWSYNC] is cleared when the software trigger
event occurs.

• In Enhanced PWM Synchronization mode (when SYNCONF[SYNCMODE] = 1),
• When SYNCONF[SWRSTCNT] = 0, SYNC[SWSYNC] is cleared at the next selected loading point after that

the software trigger event occurred.
• When SYNCONF[SWRSTCNT] = 1, SYNC[SWSYNC] is cleared when the software trigger event occurs.

Figure 2. Software trigger event

3.3 Legacy PWM synchronization
Legacy mode is selected when SYNCONF[SYNCMODE] = 0. However, it is expected that the registers are synchronized
only by the Enhanced PWM Synchronization.

3.3.1 MOD register synchronization
The MOD register synchronization updates the MOD register with its buffer value. This synchronization is enabled if
MODE[FTMEN] = 1.

The MOD register synchronization can be done either by the Enhanced PWM Synchronization (SYNCONF[SYNCMODE] =
1) or the Legacy PWM Synchronization (SYNCONF[SYNCMODE] = 0). However, it is expected that the MOD register be
synchronized only by the Enhanced PWM Synchronization.

In the case of enhanced PWM synchronization, the MOD register synchronization depends on SYNCONF[SWWRBUF],
SYNCONF[SWRSTCNT], SYNCONF[HWWRBUF], and SYNCONF[HWRSTCNT], according to this flowchart:

Synchronization principle

PWM Synchronization Using Kinetis Flextimers, Rev. 0, 8/2012

4 Freescale Semiconductor, Inc.
General Business Information

Figure 3. MOD register synchronization flowchart

3.3.2 CNTIN register synchronization
The CNTIN register synchronization can be done only by the Enhanced PWM Synchronization when
SYNCONF[SYNCMODE] = 1.

Synchronization principle

PWM Synchronization Using Kinetis Flextimers, Rev. 0, 8/2012

Freescale Semiconductor, Inc. 5
General Business Information

3.3.3 C(n)V and C(n+1)V register synchronization
The synchronization mechanism is the same as the MOD register synchronization.

However, it is expected that the C(n)V and C(n+1)V registers be synchronized only by the Enhanced PWM Synchronization
(when SYNCONF[SYNCMODE] = 1).

3.3.4 OUTMASK register synchronization
The OUTMASK register can be updated at each rising-edge of the system clock, when SYNCONF[SYNCHOM] = 0, or by
the Legacy PWM synchronization, when SYNC[SYNCHOM] = 1 and SYNCONF[SYNCMODE] = 0. However, it is
expected that the OUTMASK register be synchronized only by the enhanced PWM synchronization.

In the case of Legacy PWM Synchronization, the OUTMASK register synchronization depends on MODE[PWMSYNC]
according to the following description.

If SYNCONF[SYNCMODE] = 0, SYNC[SYNCHOM] = 1, and SYNC[PWMSYNC] = 0, then this synchronization is done
on the next enabled trigger event.

• If the trigger event was a software trigger, then SYNC[SWSYNC] is cleared on the next selected loading point. See
Figure 4.

• If the trigger event was a hardware trigger, then SYNC[TRIGn] is cleared. See Figure 5.

Examples with software and hardware triggers follow.

Figure 4. OUTMASK Synchronization with SYNCONF[SYNCMODE] = 0,
SYNC[SYNCHOM] = 1, MODE[PWMSYNC] = 0 and software trigger was used

Synchronization principle

PWM Synchronization Using Kinetis Flextimers, Rev. 0, 8/2012

6 Freescale Semiconductor, Inc.
General Business Information

Figure 5. OUTMASK synchronization with SYNCONF[SYNCMODE] = 0,
SYNCONF[HWTRIGMODE] = 0, SYNC[SYNCHOM] = 1, MODE[PWMSYNC] = 0,1, and a

hardware trigger was used

3.3.5 INVCTRL register synchronization
The INVCTRL register synchronization updates the INVCTRL register with its buffer value.

The INVCTRL register can be updated at each rising-edge of the system clock, when SYNCONF[INVC] = 0, or by the
Enhanced PWM Synchronization mode, when SYNCONF[INVC] = 1 and SYNCONF[SYNCMODE] = 1, according to the
flowchart shown in Figure 6.

In the case of enhanced PWM synchronization, the INVCTRL register synchronization depends on SYNCONF[SWINVC]
and SYNCONF[HWINVC].

Synchronization principle

PWM Synchronization Using Kinetis Flextimers, Rev. 0, 8/2012

Freescale Semiconductor, Inc. 7
General Business Information

Figure 6. INVCTRL register synchronization flowchart

Synchronization principle

PWM Synchronization Using Kinetis Flextimers, Rev. 0, 8/2012

8 Freescale Semiconductor, Inc.
General Business Information

3.3.6 SWOCTRL register synchronization
The SWOCTRL register can be updated:

• At each rising-edge of the system clock when SYNCONF[SWOC] = 0, or
• By the Enhanced PWM Synchronization when SYNCONF[SWOC] = 1 and SYNCONF[SYNCMODE] = 1

The Legacy mode is not supported.

3.3.7 FTM counter synchronization
In the case of Legacy PWM synchronization, the FTM counter synchronization depends on SYNC[REINIT] and
MODE[PWMSYNC] fields, according to the following description.

If SYNCONF[SYNCMODE] = 0, SYNC[REINIT] = 1, and MODE[PWMSYNC] = 0, then this synchronization is done on
the next enabled trigger event.

• If the trigger event was a software trigger, then SYNC[SWSYNC] is cleared according to the example shown in Figure
7.

• If the trigger event was a hardware trigger then SYNC[TRIGn] field is cleared according to hardware trigger. See the
example shown in Figure 8.

Figure 7. FTM counter synchronization with SYNCONF[SYNCMODE] = 0, SYNC[REINIT]
= 1, MODE[PWMSYNC] = 0, and software trigger was used

Synchronization principle

PWM Synchronization Using Kinetis Flextimers, Rev. 0, 8/2012

Freescale Semiconductor, Inc. 9
General Business Information

Figure 8. FTM counter synchronization with SYNCONF[SYNCMODE] = 0,
SYNCONF[HWTRIGMODE] = 0, SYNC[REINIT] = 1, MODE[PWMSYNC] = 0, 1, and

hardware trigger was used

3.4 Enhanced PWM synchronization
Enhanced mode is selected when SYNCONF[SYNCMODE] = 1. This synchronization mode is recommended.

3.4.1 MOD register synchronization
In the case of legacy PWM synchronization, the MOD register synchronization depends on MODE[PWMSYNC] and
SYNC[REINIT] fields according to the following description.

• If SYNCONF[SYNCMODE] = 0, MODE[PWMSYNC] = 0, and SYNC[REINIT] = 0, or SYNCONF[SYNCMODE] =
0 and MODE[PWMSYNC] = 1, then this synchronization is done on the next selected loading point after an enabled
trigger event takes place.

• If the trigger event was a software trigger, then SYNC[SWSYNC] is cleared on the next selected loading point.
See Figure 9.

• If the trigger event was a hardware trigger, then the trigger enable field, SYNC[TRIGn] is cleared according to
Hardware Trigger. See Figure 10.

Examples with software and hardware triggers are shown in the following figures.

Synchronization principle

PWM Synchronization Using Kinetis Flextimers, Rev. 0, 8/2012

10 Freescale Semiconductor, Inc.
General Business Information

Figure 9. MOD synchronization with SYNCONF[SYNCMODE] = 0, MODE[PWMSYNC] = 0,
SYNC[REINIT] = 0, or SYNCONF[SYNCMODE] = 0, MODE[PWMSYNC] = 1, and software

trigger was used

Figure 10. MOD synchronization with SYNCONF[SYNCMODE] = 0,
SYNCONF[HWTRIGMODE] = 0, MODE[PWMSYNC] = 0, SYNC[REINIT] = 0, and a

hardware trigger was used

If SYNCONF[SYNCMODE] = 0, MODE[PWMSYNC] = 0, and SYNC[REINIT] = 1, then this synchronization is made on
the next enabled trigger event.

• If the trigger event was a software trigger, then SYNC[SWSYNC] is cleared according to the example given in Figure
11.

• If the trigger event was a hardware trigger, then SYNC[TRIGn] is cleared according to Hardware Trigger. See Figure
12.

Examples with software and hardware triggers are shown in the following figures.

Synchronization principle

PWM Synchronization Using Kinetis Flextimers, Rev. 0, 8/2012

Freescale Semiconductor, Inc. 11
General Business Information

Figure 11. MOD synchronization with SYNCONF[SYNCMODE] = 0, MODE[PWMSYNC] =
0, SYNC[REINIT] = 1, and software trigger was used

Figure 12. MOD synchronization with SYNCONF[SYNCMODE] = 0,
SYNCONF[HWTRIGMODE] = 0, MODE[PWMSYNC] = 0, SYNC[REINIT] = 1, and a

hardware trigger was used

3.4.2 CNTIN register synchronization
The CNTIN register synchronization updates the CNTIN register with its buffer value. This synchronization is enabled if
MODE[FTMEN] = 1, SYNCONF[SYNCMODE] = 1, and SYNCONF[CNTINC] = 1. The CNTIN register synchronization
can be done only by the Enhanced PWM Synchronization (SYNCONF[SYNCMODE] = 1). The synchronization mechanism
is the same as the MOD register synchronization done by the enhanced PWM synchronization (See MOD register
synchronization).

3.4.3 C(n)V and C(n+1)V register synchronization
The C(n)V and C(n+1)V registers synchronization updates the C(n)V and C(n+1)V registers with their buffer values.

This synchronization is enabled if MODE[FTMEN] = 1 and COMBINE[SYNCEN] = 1. The synchronization mechanism is
the same as the MOD register synchronization (See MOD register synchronization). However, it is expected that the C(n)V
and C(n+1)V registers be synchronized only by the Enhanced PWM Synchronization when SYNCONF[SYNCMODE] = 1.

Synchronization principle

PWM Synchronization Using Kinetis Flextimers, Rev. 0, 8/2012

12 Freescale Semiconductor, Inc.
General Business Information

3.4.4 OUTMASK register synchronization
The OUTMASK register synchronization updates the OUTMASK register with its buffer value.

The OUTMASK register can be updated at each rising-edge of the system clock (SYNC[SYNCHOM] = 0) by:
• The Enhanced PWM Synchronization, when SYNC[SYNCHOM] = 1 and SYNCONF[SYNCMODE] = 1, or
• The Legacy PWM Synchronization, when SYNC[SYNCHOM] = 1 and SYNCONF[SYNCMODE] = 0.

However, it is expected that the OUTMASK register be synchronized only by the Enhanced PWM Synchronization.

In the case of Enhanced PWM Synchronization, the OUTMASK register synchronization depends on SYNCONF[SWOM]
and SYNCONF[HWOM] fields. See the following flowchart.

Synchronization principle

PWM Synchronization Using Kinetis Flextimers, Rev. 0, 8/2012

Freescale Semiconductor, Inc. 13
General Business Information

Figure 13. OUTMASK register synchronization flowchart

Synchronization principle

PWM Synchronization Using Kinetis Flextimers, Rev. 0, 8/2012

14 Freescale Semiconductor, Inc.
General Business Information

3.4.5 INVCTRL register synchronization
The INVCTRL register can be updated:

• At each rising-edge of the system clock (SYNCONF[INVC] = 0), or
• By the Enhanced PWM Synchronization when SYNCONF[INVC] = 1 and SYNCONF[SYNCMODE] = 1

The Legacy mode is not supported.

3.4.6 SWOCTRL register synchronization
The SWOCTRL register can be updated:

• at each rising-edge of the system clock when SYNCONF[SWOC] = 0, or
• by the Enhanced PWM Synchronization when SYNCONF[SWOC] = 1 and SYNCONF[SYNCMODE] = 1, according

to the flowchart shown in Figure 14.

In the case of enhanced PWM synchronization, the SWOCTRL register synchronization depends on the
SYNCONF[SWSOC] and SYNCONF[HWSOC] fields.

Synchronization principle

PWM Synchronization Using Kinetis Flextimers, Rev. 0, 8/2012

Freescale Semiconductor, Inc. 15
General Business Information

Figure 14. SWOCTRL register synchronization flowchart

Synchronization principle

PWM Synchronization Using Kinetis Flextimers, Rev. 0, 8/2012

16 Freescale Semiconductor, Inc.
General Business Information

3.4.7 FTM counter synchronization
The FTM counter synchronization is a mechanism that allows the FTM to restart the PWM generation at a certain point in the
PWM period. All the channels outputs except for those in Output Compare mode, are forced to their initial value, and the
FTM counter is forced to its initial counting value defined by the CNTIN register.

Figure 15 shows the FTM counter synchronization.

NOTE
After the synchronization event has occurred, the channel (n) is set to its initial value and
the channel (n+1) is not set to its initial value due to a specific timing of this figure in
which the deadtime insertion prevents this channel output from transitioning to 1. If no
deadtime insertion is selected, then the channel (n+1) transitions to logical value 1
immediately after the synchronization event has occurred.

Figure 15. FTM counter synchronization

The FTM counter synchronization can be done by either the Enhanced PWM Synchronization, when
SYNCONF[SYNCMODE] = 1, or the Legacy PWM synchronization, when SYNCONF[SYNCMODE] = 0.

However, it is expected that the FTM counter be synchronized only by the enhanced PWM synchronization.

In the case of Enhanced PWM Synchronization, the FTM counter synchronization depends on SYNCONF[SWRSTCNT] and
SYNCONF[HWRSTCNT] fields according to the following flowchart.

Synchronization principle

PWM Synchronization Using Kinetis Flextimers, Rev. 0, 8/2012

Freescale Semiconductor, Inc. 17
General Business Information

Figure 16. FTM counter synchronization flowchart

3.5 Boundary cycle and loading points
The boundary cycle definition is important for the loading points for the MOD, CNTIN, and C(n)V registers

• In Up-Counting mode, (Up Counting) the boundary cycle is defined as when the counter wraps to its initial value
(CNTIN). In this mode, the loading points are enabled if one of the SYNC[CNTMIN] or SYNC[CNTMAX} fields is 1.

• In Up-Down Counting mode (Up-Down Counting), the boundary cycle is defined as when the counter turns from down
to up counting and up to down counting. In the up-down counting mode, the loading points are selected by
SYNC[CNTMIN] and SYNC[CNTMAX], as indicated in Figure 17.

Figure 17 shows the boundary cycles and the loading points. The loading points are safe places for register updates, thus
allowing a smooth transitions in PWM waveform generation.

Synchronization principle

PWM Synchronization Using Kinetis Flextimers, Rev. 0, 8/2012

18 Freescale Semiconductor, Inc.
General Business Information

For both the counting modes, if neither SYNC[CNTMIN] nor SYNC[CNTMAX] is 1, then the boundary cycles are not used
as loading points for registers updates. See the register synchronization descriptions in the following sections for details.

Figure 17. Boundary cycles and loading points

4 Example code
The example code is based on ARM®Cortex™-M4 core KE15 device. Both Legacy and Enhanced PWM synchronization
modes are shown and both software and hardware trigger are involved in each mode.

 /* Trigger source select, enable one macro at one time */

 //#define SYNC_TRIGGER_TEST 1 /* Software synchronization */
 #define SYNC_TRIGGER_TEST 2 /* Trigger0 synchronization */

 /* take FTM0 as example, initial FTM0 registers */

 FTM0_MODE = 0x05; /* FTM features are */
 FTM0_COMBINE = 0x232323; /* Combine mode is enabled */

 FTM0_C0SC = 0x28;
 FTM0_C1SC = 0x28;
 FTM0_C2SC = 0x28;
 FTM0_C3SC = 0x28;
 FTM0_C4SC = 0x28;
 FTM0_C5SC = 0x28;
 FTM0_MOD = 999;
 FTM0_C0V = 100;
 FTM0_C1V = 800;
 FTM0_C2V = 100;
 FTM0_C3V = 800;
 FTM0_C4V = 100;
 FTM0_C5V = 800;

Example code

PWM Synchronization Using Kinetis Flextimers, Rev. 0, 8/2012

Freescale Semiconductor, Inc. 19
General Business Information

 FTM0_SC = 0x08;

 #if SYNC_TRIGGER_TEST == 1
 printf("FTM Software synchronization Test-- legacy mode\r\n");
 FTM0_SYNCONF = 0x00000034;
FTM0_SYNC = 0x0C;
 #elif SYNC_TRIGGER_TEST == 2
 printf("FTM TRIG0 synchronization Test-- legacy mode\r\n");
 FTM0_SYNCONF = 0x00000034;
 FTM0_SYNC = 0x1C;
 #endif

 /* update the FTM0 registers */
 FTM0_MOD = 500;
 FTM0_C0V = 200;
 FTM0_C1V = 400;
 FTM0_C2V = 200;
 FTM0_C3V = 400;
 FTM0_C4V = 200;
 FTM0_C5V = 400;
 FTM0_OUTMASK = 0x3F;
 FTM0_CNTIN = 0x30;
 FTM0_INVCTRL = 0x03;
 FTM0_SWOCTRL = 0x3F3F;

 printf("Check the registers still keep old value before synchronization\r\n");
 printf("FTM0_MOD = %d\r\n",FTM0_MOD);
 printf("FTM0_C0V = %d\r\n",FTM0_C0V);
 printf("FTM0_C1V = %d\r\n",FTM0_C1V);
 printf("FTM0_C2V = %d\r\n",FTM0_C2V);
 printf("FTM0_C3V = %d\r\n",FTM0_C3V);
 printf("FTM0_C4V = %d\r\n",FTM0_C4V);
 printf("FTM0_C5V = %d\r\n",FTM0_C5V);
 printf("FTM0_OUTMASK = %x\r\n",FTM0_OUTMASK);
 printf("FTM0_CNTIN = %x\r\n",FTM0_CNTIN);
 printf("FTM0_INVCTRL = %x\r\n",FTM0_INVCTRL);
 printf("FTM0_SWOCTRL = %x\r\n",FTM0_SWOCTRL);
 printf("FTM0_CNT = %x\r\n",FTM0_CNT);

 #if SYNC_TRIGGER_TEST == 1
 FTM0_SYNC = 0x8C; // software trigger
 #elif SYNC_TRIGGER_TEST == 2
 SIM_SOPT3 &= ~0x00010000; //before setting, clear first
 asm(nop);
 asm(nop);
 SIM_SOPT3 |= 0x00010000; //set FTM_SYNCx to generate trigger 0
 #endif

 printf("Check the register value changed after synchronization\r\n");
 printf("FTM0_MOD = %d\r\n",FTM0_MOD);
 printf("FTM0_C0V = %d\r\n",FTM0_C0V);
 printf("FTM0_C1V = %d\r\n",FTM0_C1V);
 printf("FTM0_C2V = %d\r\n",FTM0_C2V);
 printf("FTM0_C3V = %d\r\n",FTM0_C3V);
 printf("FTM0_C4V = %d\r\n",FTM0_C4V);
 printf("FTM0_C5V = %d\r\n",FTM0_C5V);
 printf("FTM0_OUTMASK = %x\r\n",FTM0_OUTMASK);
 printf("FTM0_CNTIN = %x\r\n",FTM0_CNTIN);
 printf("FTM0_INVCTRL = %x\r\n",FTM0_INVCTRL);
 printf("FTM0_SWOCTRL = %x\r\n",FTM0_SWOCTRL);
 printf("FTM0_CNT = %x\r\n",FTM0_CNT);

 #if SYNC_TRIGGER_TEST == 1
 printf("FTM Software synchronization Test-- enhanced mode\r\n");
 FTM0_SYNCONF = 0x00001FB4; // enhanced mode, software trigger
 FTM0_SYNC = 0x00;
 #elif SYNC_TRIGGER_TEST == 2
 printf("FTM TRIG0 synchronization Test-- enhanced mode\r\n");
FTM0_SYNCONF = 0x001F00B4; // enhanced mode, hardware trigger 0
 FTM0_SYNC = 0x10;

Example code

PWM Synchronization Using Kinetis Flextimers, Rev. 0, 8/2012

20 Freescale Semiconductor, Inc.
General Business Information

 #endif

/* update the FTM0 registers */
 FTM0_MOD = 999;
 FTM0_C0V = 100;
 FTM0_C1V = 800;
 FTM0_C2V = 100;
 FTM0_C3V = 800;
 FTM0_C4V = 100;
 FTM0_C5V = 800;
 FTM0_OUTMASK = 0x3F;
 FTM0_CNTIN = 0x40;
 FTM0_INVCTRL = 0x04;
 FTM0_SWOCTRL = 0x3F3F;

 printf("Check the registers still keep old value before synchronization\r\n");
 printf("FTM0_MOD = %d\r\n",FTM0_MOD);
 printf("FTM0_C0V = %d\r\n",FTM0_C0V);
 printf("FTM0_C1V = %d\r\n",FTM0_C1V);
 printf("FTM0_C2V = %d\r\n",FTM0_C2V);
 printf("FTM0_C3V = %d\r\n",FTM0_C3V);
 printf("FTM0_C4V = %d\r\n",FTM0_C4V);
 printf("FTM0_C5V = %d\r\n",FTM0_C5V);
 printf("FTM0_OUTMASK = %x\r\n",FTM0_OUTMASK);
 printf("FTM0_CNTIN = %x\r\n",FTM0_CNTIN);
 printf("FTM0_INVCTRL = %x\r\n",FTM0_INVCTRL);
 printf("FTM0_SWOCTRL = %x\r\n",FTM0_SWOCTRL);
 printf("FTM0_CNT = %x\r\n",FTM0_CNT);

 #if SYNC_TRIGGER_TEST == 1
 FTM0_SYNC = 0x80; // generate software trigger
 #elif SYNC_TRIGGER_TEST == 2
 SIM_SOPT3 &= ~0x00010000; // before setting, clear first
 asm(nop);
 asm(nop);
 SIM_SOPT3 |= 0x00010000; // set FTM_SYNCx to generate trigger 0
 #endif

 printf("Check the register value changed after synchronization\r\n");
 printf("FTM0_MOD = %d\r\n",FTM0_MOD);
 printf("FTM0_C0V = %d\r\n",FTM0_C0V);
 printf("FTM0_C1V = %d\r\n",FTM0_C1V);
 printf("FTM0_C2V = %d\r\n",FTM0_C2V);
 printf("FTM0_C3V = %d\r\n",FTM0_C3V);
 printf("FTM0_C4V = %d\r\n",FTM0_C4V);
 printf("FTM0_C5V = %d\r\n",FTM0_C5V);
 printf("FTM0_OUTMASK = %x\r\n",FTM0_OUTMASK);
 printf("FTM0_CNTIN = %x\r\n",FTM0_CNTIN);
 printf("FTM0_INVCTRL = %x\r\n",FTM0_INVCTRL);
 printf("FTM0_SWOCTRL = %x\r\n",FTM0_SWOCTRL);
 printf("FTM0_CNT = %x\r\n",FTM0_CNT);

Figure 18 and Figure 19 show the execution results of example code with software and hardware triggers respectively.

Example code

PWM Synchronization Using Kinetis Flextimers, Rev. 0, 8/2012

Freescale Semiconductor, Inc. 21
General Business Information

Figure 18. Software Trigger

Example code

PWM Synchronization Using Kinetis Flextimers, Rev. 0, 8/2012

22 Freescale Semiconductor, Inc.
General Business Information

Figure 19. Hardware trigger–trigger 0

5 Conclusion
There are too many ways for FTM synchronization as described in this application note, which include Legacy mode,
Enhanced mode and both modes include software and hardware trigger. The choice of the FTM synchronization method
depends on target applications.

The enhanced PWM synchronization mode is recommended for motor control and power conversion applications.

6 References
• K60 Sub-Family Reference Manual, available at http://www.freescale.com

Conclusion

PWM Synchronization Using Kinetis Flextimers, Rev. 0, 8/2012

Freescale Semiconductor, Inc. 23
General Business Information

http://www.freescale.com

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

Document Number: AN4560
Rev. 0, 8/2012

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© 2012 Freescale Semiconductor, Inc.

	FlexTimer introduction
	FlexTimer synchronization and registers concerned
	Synchronization principle
	Hardware trigger
	Software trigger
	Legacy PWM synchronization
	MOD register synchronization
	CNTIN register synchronization
	C(n)V and C(n+1)V register synchronization
	OUTMASK register synchronization
	INVCTRL register synchronization
	SWOCTRL register synchronization
	FTM counter synchronization

	Enhanced PWM synchronization
	MOD register synchronization
	CNTIN register synchronization
	C(n)V and C(n+1)V register synchronization
	OUTMASK register synchronization
	INVCTRL register synchronization
	SWOCTRL register synchronization
	FTM counter synchronization

	Boundary cycle and loading points

	Example code
	Conclusion
	References

