
Freescale Semiconductor
Application Note

© 2013 Freescale Semiconductor, Inc. All rights reserved.

1 Introduction
The Programmable Delay Block (PDB) provides
controllable delays from either an internal or an external
trigger, or a programmable interval tick to the hardware
trigger inputs of the ADCs. This functionality is required for
applications when precise timing of ADC conversions are
required, or when the measured signal must be filtered using
precise sampling.

The PDB is necessary in some motor control specific
applications which require advanced ADC to PWM
synchronization. This application note describes the set-up
of the PDB, routing of the signal onto a GPIO pin, and
sequence error handling. A typical application is the BLDC
six-step method. This application note focuses on the Kinetis
K60 family, the FlexTimer, and 16-bit ADCs.

2 Understanding PDB
terminology

This section describes the important terms used in the
Kinetis K60 reference manual that relate to this application.

Document Number: AN4822
Rev. 0, 12/2013

Contents
1. Introduction . 1
2. Understanding PDB terminology 1
3. PDB Set-up . 2
4. Routing the PDB pre-trigger onto a GPIO pin 4
5. PDB sequence error handling 4
6. Application example . 5
7. Reference documentation . 6
8. Revision history . 7

Tips and Tricks Using PDB in Motor
Control Applications on Kinetis
by Ivan Lovas

Freescale Semiconductor, Inc.

Tips and Tricks Using PDB in Motor Control Applications on Kinetis, Rev. 0

2 Freescale Semiconductor

PDB Set-up

Figure 1 illustrates the arrangement of the FlexTimer to the ADCs in association to the terms used.

Figure 1. Internal arrangement of PDB

Input trigger source—One possible input source which starts the PDB counter for all PDB channels. All
possible input sources can be found in the chip reference manual, in the section “PDB Input Trigger
Connections.” The input trigger source number must be entered into register PDBx_SC, field TRGSEL.

PDB channel—Each PDB channel is associated with one ADC. This means that ADC0 is associated with
PDB channel 0 and ADC1 is associated with PDB channel 1.

Pre-trigger delay—Each pre-trigger is generated after a predefined delay, which is measured from the
input trigger event. After this delay, an ADC convertor begins to measure and the result of conversion is
stored in the result register corresponding to the respective pre-trigger delay. Relationships between
pre-triggers and result registers are described in the Table 1.

3 PDB Set-up
To accurately synchronize between the FlexTimer and ADC, three peripherals must be configured. Only
the settings necessary for synchronization will be described. The settings for PWM generation and ADC
module are application specific and therefore cannot be described in detail here.

Table 1. Relation between pre-triggers and result registers

Respective Pre-Trigger Delay Register with Conversion Result

PDB0_CH0_DLY0 ADC0_RA

PDB0_CH0_DLY1 ADC0_RB

PDB0_CH1_DLY0 ADC1_RA

PDB0_CH1_DLY1 ADC1_RB

Tips and Tricks Using PDB in Motor Control Applications on Kinetis, Rev. 0

Freescale Semiconductor 3

PDB Set-up

Example 1. PDB settings

PDBinit(void)

{

SIM_SCGC6 |= SIM_SCGC6_PDB_MASK; // enable clock for PDB module

PDB0_MOD = MODULO; // modulo for PDB counter should be same as FTM modulo

//enable required pre-triggers, enable back-to-back operation

PDB0_CH1C1 = PDB_C1_EN (0x03) | PDB_C1_TOS(0x03) | PDB_C1_BB (0x02);

PDB0_CH0C1 = PDB_C1_EN (0x03) | PDB_C1_TOS(0x03) | PDB_C1_BB (0x02);

PDB0_CH0DLY0 = 150; // delay for first pre-trigger of PDB channel 0

PDB0_CH1DLY0 = 200; // delay for first pre-trigger of PDB channel 1

PDB0_SC = PDB_SC_PDBEN_MASK

| PDB_SC_PRESCALER(0x0)

| PDB_SC_TRGSEL(0x8) // 0x8=FTM0

| PDB_SC_MULT(0)

| PDB_SC_LDOK_MASK

| PDB_SC_PDBEIE_MASK;

}

FlexTimer init trigger signal needs to be routed out of the FlexTimer by the FlexTimer settings command.

Example 2. FlexTimer settings

FTM0_EXTTRIG |= FTM_EXTTRIG_INITTRIGEN_MASK;

Example 3. ADC settings

ADC1_SC2 |= ADC_SC2_ADTRG_MASK; // Enable H/W trigger for ADC1

ADC0_SC2 |= ADC_SC2_ADTRG_MASK; // Enable H/W trigger for ADC0

SIM_SOPT7 = 0; // Select H/W trigger source for the ADCs

ADC1_SC1A = ADC_SC1_ADCH(11); // BEMF voltage measurement (ADC1_RA)

ADC1_SC1B = ADC_SC1_AIEN_MASK | ADC_SC1_ADCH(12); // DC-Bus current (ADC1_RB)

ADC0_SC1A = ADC_SC1_ADCH(19); // DC voltage (ADC0_RA)

ADC0_SC1B = ADC_SC1_AIEN_MASK | ADC_SC1_ADCH(14); // Pressure sensor (ADC0_RB)

Tips and Tricks Using PDB in Motor Control Applications on Kinetis, Rev. 0

4 Freescale Semiconductor

Routing the PDB pre-trigger onto a GPIO pin

4 Routing the PDB pre-trigger onto a GPIO pin
To check whether the synchronization is working correctly, it is good to route the pre-trigger signal to a
GPIO pin. For this purpose, you can use an unused channel of the FlexTimer.

The following settings are necessary to prepare the trigger diagnostic pin. This example selects the
FlexTimer channel 7, however it is possible to select any free FlexTimer channel.

FTM0_C7SC |= FTM_CnSC_MSA_MASK; // Set the output compare mode to FTM channel 7

FTM0_C7SC |= FTM_CnSC_ELSA_MASK; // Enable the output toggle on match

PORTD_PCR7 |= PORT_PCR_MUX(4); // Set the pin alternative for PORTD 7 - Route the FTM signal
to a pin

Next, fill the FlexTimer value register with the value of the required delay. If the PDB delay is changing
periodically, the FlexTimer value register requires periodic updates.

FTM0_C7V = PDB0_CH1DLY0; // Enter the value of the delay from the pre-trigger delay register

5 PDB sequence error handling
The ADCn block can be triggered for a conversion by one pre-trigger from PDB channel n. When one
conversion is in progress that is triggered by one of the pre-triggers from PDB channel n, then a new trigger
from the PDB channel's corresponding pre-trigger m cannot be accepted by ADCn, and ERR[m] is set.

For example, in the Sensorless BLDC six-step control, ADC channels are periodically switched according
to rotor position. This principle may cause a PDB sequence error. To avoid this type of error, it is necessary
to switch to the channel only when no conversion is active. It is recommended to only allow switching
after the ADC conversion complete interrupt is received.

Changing the ADC channel can be also tricky, because writing SC1A while SC1A is actively controlling
a conversion, aborts the current conversion therefore; the conversion complete interrupt is not called, the
result register is not read, the PDB flag is not cleared, and a PDB sequence error occurs. In Software
Trigger mode, when SC2[ADTRG]=0, writes to SC1A it subsequently initiates a new conversion if
SC1[ADCH] contains a value other than all 1s.

When the PDB is not managed correctly, PDB sequence errors can occur. These situations occur given
several scenarios. For example:

• When delay0 and delay1 of one PDB channel are too close and the first conversion is not complete
before the start of a new conversion.

• When the asynchronous event that causes the conversion complete flag is not cleared on time and
a new conversion is requested, such as:

— an interrupt with a high priority causes the COCO flag not to be cleared on time.

— using break points during application debugging.

• When the ADC channel is changed during an active ADC conversion, such as:

— a BLDC motor with Hall sensors controlled by interrupts.

— a slow control loop is asynchronous to a fast control loop.

Tips and Tricks Using PDB in Motor Control Applications on Kinetis, Rev. 0

Freescale Semiconductor 5

Application example

After a PDB sequence error occurs the PDB remains inactive until the errors are cleared. Before a PDB
error is cleared, the PDB module must be disabled and re-enabled after errors are cleared.

Example 4. An example of a PDB sequence error interrupt routine

void PDB_error_isr(void)

{

 PDB0_SC &= ~PDB_SC_PDBEN_MASK; // disable PDB

 PDB0_CH0S &= ~PDB_S_ERR_MASK; // reset error CH0

 PDB0_CH1S &= ~PDB_S_ERR_MASK; // reset error CH1

 PDB0_SC |= PDB_SC_PDBEN_MASK; // Enable PDB

}

This function is called when a PDB error occurs. Bit PDBx_SC_PDBEIE must be set to enable the
sequence error interrupt. It is not required to set bit PDBx_SC_PDBIE to enable the error interrupt.

6 Application example
Figure 2 illustrates a practical usage of PDB synchronization when a noisy signal is measured. As shown,
the measured signal (orange signal) is effectively filtered by proper sampling. Samples are taken after a
transient event finishes, so only clean signal is measured. Points where the samples are taken are indicated
by the blue diagnostic signal.

Tips and Tricks Using PDB in Motor Control Applications on Kinetis, Rev. 0

6 Freescale Semiconductor

Reference documentation

Figure 2. Example of proper setting of PDB trigger, for noisy signal filtering

7 Reference documentation
K60 Sub-Family Reference Manual for 100 MHz devices in 100 pin packages
(document K60P100M100SF2V2RM)

K60 Sub-Family Reference Manual for 100 MHz devices in 121 pin packages
(document K60P121M100SF2V2RM)

K60 Sub-Family Reference Manual for 100 MHz devices in 144 pin packages
(document K60P144M100SF2V2RM)

K60 Reference Manual (document number K60P120M100SF2RM)

K60 Sub-Family Reference Manual for 100 MHz devices in 100 pin packages
(document K60P100M100SF2RM)

Legend:
Orange waveform: Noisy signal to be measured.
Blue waveform: Diagnostic signal (toggled on the ADC trigger).

Tips and Tricks Using PDB in Motor Control Applications on Kinetis, Rev. 0

Freescale Semiconductor 7

Revision history

K60 Sub-Family Reference Manual for 100 MHz devices in 121 pin packages
(document K60P121M100SF2RM)

K60 Sub-Family Reference Manual for 100 MHz devices in 144 pin packages
(document K60P144M100SF2RM)

8 Revision history
Revision 0 is the initial release of the document.

Document Number: AN4822
Rev. 0
12/2013

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer’s technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products pursuant

to standard terms and conditions of sale, which can be found at the following address:

freescale.com/SalesTermsandConditions.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor,

Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of

their respective owners. ARM and the ARM Power logo are the registered trademarks

of ARM Limited.

© 2013 Freescale Semiconductor, Inc.

	Tips and Tricks Using PDB in Motor Control Applications on Kinetis
	1 Introduction
	2 Understanding PDB terminology
	Figure 1. Internal arrangement of PDB
	Table 1. Relation between pre-triggers and result registers

	3 PDB Set-up
	4 Routing the PDB pre-trigger onto a GPIO pin
	5 PDB sequence error handling
	6 Application example
	Figure 2. Example of proper setting of PDB trigger, for noisy signal filtering

	7 Reference documentation
	8 Revision history
	Contact information

