

Mask Set Errata

KINETIS_50MHZ_4N86B Rev 15 JAN 2014

Mask Set Errata for Mask 4N86B

Introduction

This report applies to mask 4N86B for these products:

• KINETIS_50MHZ

Errata ID	Errata Title
3863	ADC: In 16-bit differential mode, ADC may result in a conversion error when positive input is near upper rail reference voltage
4626	DMA: DMA loads wrong value into Transfer Control Descriptor when configured for scatter/gather processing.
4588	DMAMUX: When using PIT with "always enabled" request, DMA request does not deassert correctly
5499	MCG: A reset or interrupt request due to a PLL loss of lock (LOL) condition will not occur asynchronously
4590	MCG: Transitioning from VLPS to VLPR low power modes while in BLPI clock mode is not supported.
5667	PMC: When used as an input to ADC or CMP modules, the PMC bandgap 1-V voltage reference is not available in VLPx, LLS, or VLLSx modes
5130	SAI: Under certain conditions, the CPU cannot reenter STOP mode via an asynchronous interrupt wakeup event
5472	SMC: Mode transition VLPR->VLLS0(POR disabled)->RUN, will cause POR & LVD.
3926	TSI: The TSI will run several scan cycles during reference clock instead of scanning each electrode once
2638	TSI: The counter registers are not immediately updated after the EOSF bit is set.
4181	TSI: When the overrun flag is set, the TSI scanning sequence will exhibit undefined behavior.
4945	UART: ISO-7816 T=1 mode receive data format with a single stop bit is not supported
3892	UART: ISO-7816 automatic initial character detect feature not working correctly
5928	USBOTG: USBx_USBTRC0[USBRESET] bit does not operate as expected in all cases

e3863: ADC: In 16-bit differential mode, ADC may result in a conversion error when positive input is near upper rail reference voltage

Errata type: Errata

- **Description:** In 16-bit differential mode, the ADC may result in a conversion error when the input voltage on the plus-side of the differential pair (DPx) exceeds approximately (VREFH*31/32). Other modes are unaffected.
- **Workaround:** To avoid a conversion error near positive full-scale in this mode, do not allow the input voltage on the plus-side of the differential pair (DPx) to exceed (VREFH*31/32).

e4626: DMA: DMA loads wrong value into Transfer Control Descriptor when configured for scatter/gather processing.

- Errata type: Errata
- **Description:** When DMA scatter/gather feature is enabled it loads a wrong value into Transfer Control Descriptor (TCD) after channel completes a major loop, which causes improper operation of this feature.
- **Workaround:** Disable the scatter/gather feature by clearing DMA_TCDn_CSR[ESG] = 0. Scatter/gather feature can be emulated in one of the following ways.

1. Use DMA dynamic channel linking feature. The TCD can be loaded with a new value from memory with the linked DMA channel.

2. Enable DMA DONE interrupt. Configure the DMA Done interrupt to be asserted when a major loop is completed, DMA_TCDn_CSR[INTMAJOR], then in the interrupt service routine copy the 32-byte data structure of the TCD from memory to the current TCD local memory and then start current channel via software.

e4588: DMAMUX: When using PIT with "always enabled" request, DMA request does not deassert correctly

- Errata type: Errata
- **Description:** The PIT module is not assigned as a stand-alone DMA request source in the DMA request mux. Instead, the PIT is used as the trigger for the DMAMUX periodic trigger mode. If you want to use one of the PIT channels for periodic DMA requests, you would use the periodic trigger mode in conjunction with one of the "always enabled" DMA requests. However, the DMA request does not assert correctly in this case.

Instead of sending a single DMA request every time the PIT expires, the first time the PIT triggers a DMA transfer the "always enabled" source will not negate its request. This results in the DMA request remaining asserted continuously after the first trigger.

Workaround: Use of the PIT to trigger DMA channels where the major loop count is greater than one is not recommended. For periodic triggering of DMA requests with major loop counts greater than one, we recommended using another timer module instead of the PIT.

If using the PIT to trigger a DMA channel where the major loop count is set to one, then in order to get the desired periodic triggering, the DMA must do the following in the interrupt service routine for the DMA_DONE interrupt:

1. Set the DMA_TCDn_CSR[DREQ] bit and configure DMAMUX_CHCFGn[ENBL] = 0

2. Then again DMAMUX_CHCFGn[ENBL] = 1, DMASREQ=channel in your DMA DONE interrupt service routine so that "always enabled" source could negate its request then DMA request could be negated.

This will allow the desired periodic triggering to function as expected.

Mask Set Errata for Mask 4N86B, Rev 15 JAN 2014

e5499: MCG: A reset or interrupt request due to a PLL loss of lock (LOL) condition will not occur asynchronously

Errata type: Errata

- **Description:** If a PLL loss of lock condition exists, a reset or interrupt request will not occur asynchronously when the MCG is configured, using the LOLRE or LOLIE0 bits, to generate a reset or an interrupt request upon a loss of lock condition.
- **Workaround:** System designs should expect that any resets or interrupts that occur as a result of a loss of lock condition are synchronous.

e4590: MCG: Transitioning from VLPS to VLPR low power modes while in BLPI clock mode is not supported.

Errata type: Errata

Description: Transitioning from VLPS mode back to VLPR (LPWUI control bit = 0) while using BLPI clock mode only, is not supported. During Fast IRC startup, the output clock frequency may exceed the maximum VLPR operating frequency. This does not apply to the BLPE clock mode.

Workaround: There are two options for workarounds

a) Exit to Run instead of VLPR. Before entering VLPR set the LPWUI bit so that when exiting VLPS mode the MCU exits to RUN mode instead of VLPR mode. With LPWUI set any interrupt will exit VLPR or VLPS back into RUN mode. To minimize the impact of the higher RUN current re-enter VLPR quickly.

or

b) Utilize MCG clock mode BLPE when transitioning from VLPS to VLPR modes.

e5667: PMC: When used as an input to ADC or CMP modules, the PMC bandgap 1-V voltage reference is not available in VLPx, LLS, or VLLSx modes

Errata type: Errata

Description: The Power Management Controller (PMC) bandgap 1-V reference is not available as an input to the Analog-to-Digital Converter (ADC) module (using ADC input channel AD27) or the Comparator (CMP) module (using CMP input IN6) in Very Low Power Run (VLPR), Very Low Power Wait (VLPW), Very Low Power Stop (VLPS), Low Leakage Stop (LLS), Very Low Leakage Stop3 (VLLS3), Very Low Leakage Stop2 (VLLS2), Very Low Leakage Stop1 (VLLS1), or Very Low Leakage Stop0 (VLLS0) modes.

This erratum does not apply to the VREF module 1.2 V reference voltage.

Workaround: Use of the PMC bandgap 1-V reference voltage as an input to the ADC and CMP modules requires the MCU to be in Run, Wait, or Stop modes.

e5130: SAI: Under certain conditions, the CPU cannot reenter STOP mode via an asynchronous interrupt wakeup event

Errata type: Errata

Description: If the SAI generates an asynchronous interrupt to wake the core and it attempts to reenter STOP mode, then under certain conditions the STOP mode entry is blocked and the asynchronous interrupt will remain set.

This issue applies to interrupt wakeups due to the FIFO request flags or FIFO warning flags and then only if the time between the STOP mode exit and subsequent STOP mode reentry is less than 3 asynchronous bit clock cycles.

Workaround: Ensure that at least 3 bit clock cycles elapse following an asynchronous interrupt wakeup event, before STOP mode is reentered.

e5472: SMC: Mode transition VLPR->VLLS0(POR disabled)->RUN, will cause POR & LVD.

Errata type: Errata

- **Description:** The Mode transition of VLPR into VLLS0 (POR disabled) then Exit, with LLWU event, back to to RUN mode will cause a POR and LVD reset instead of the expected WAKEUP exit.
- **Workaround:** The recommendation is to transition from VLPR to RUN before entering VLLS0 with POR disabled mode.

e3926: TSI: The TSI will run several scan cycles during reference clock instead of scanning each electrode once

- Errata type: Errata
- **Description:** The TSI will run several scan cycles during reference clock instead of scanning each electrode once. For each automatic scanning period determined by AMCLKS (clock source), AMPSC (prescaler) and SMOD (period modulo), TSI will scan during one reference clock cycle divided by the AMPSC prescaler.

This does not affect the count result from TSI because TSI counters keep the last scan result.

Workaround: 1. Because counter results are not affected, a simple workaround is to use the smallest prescaler possible and use a bigger SMOD value, this will minimize the number of extra scans, thus also minimizing the amount of average extra current used by the module.

2. If strict control of number of scan cycles is needed, trigger scans with software control (using the SWTS bit) and control time between scans with a separate timer. This solution is only recommended if strict control of scan cycles is needed, if not, recommendation is to use workaround 1.

e2638: TSI: The counter registers are not immediately updated after the EOSF bit is set.

Errata type: Errata

- **Description:** The counter registers are not immediately updated after the end of scan event (EOSF is set). The counter registers will become available 0.25 ms after the EOSF flag is set. This also applies for the end-of-scan interrupt, as it is triggered with the EOSF flag. This behavior will occur both in continuous scan and in software triggered scan modes.
- **Workaround:** Insert a delay of 0.25 ms or greater prior to accessing the counter registers after an end of scan event or an end of scan interrupt that is triggered by the EOSF flag. This delay does not need to be a blocking delay, so it can be executing other actions before reading the counter registers. Notice that the out-of-range flag (OUTRGF) and interrupt occur after the counters have been updated, so if the OUTRGF flag is polled or the out-of-range interrupt is used, the workaround is not necessary.

e4181: TSI: When the overrun flag is set, the TSI scanning sequence will exhibit undefined behavior.

Errata type: Errata

- **Description:** When the overrun flag is set, the TSI scanning sequence will exhibit undefined behavior, so the results of measurements are invalid at this point. In order to continue reading valid measurements, disable the TSI module and reconfigure it.
- **Workaround:** During development make sure to measure the required scanning time for all the electrodes in your system and configure the scanning time with AMCLKS, AMPSC and SMOD so that an overrun will not happen. Consider adding about 30 to 70% more time as headroom to make sure overrun is not triggered. If scanning time is critical and added scan time is not acceptable, detect the overrun condition either by polling the overrun flag in a loop or through the TSI interrupt. Once overrun is detected, disable the TSI module, clear all flags and reconfigure. During reconfiguration, SMOD can be increased by 10% or more of the current value to reduce the number of overrun occurrences.

e4945: UART: ISO-7816 T=1 mode receive data format with a single stop bit is not supported

- Errata type: Errata
- **Description:** Transmission of ISO-7816 data frames with single stop bit is supported in T=1 mode. Currently in order to receive a frame, two or more stop bits are required. This means that 11 ETU reception based on T=1 protocol is not supported. T=0 protocol is unaffected.
- Workaround: Do not send T=1, 11 ETU frames to the UART in ISO-7816 mode. Use 12 ETU transmissions for T=1 protocol instead.

e3892: UART: ISO-7816 automatic initial character detect feature not working correctly

Errata type: Errata

Description: The ISO-7816 automatic initial character detection feature does not work. The direct convention initial character can be detected correctly, but the inverse convention initial character will only be detected if the S2[MSBF] and S2[RXINV] bits are set. This defeats the purpose of the initial character detection and automatic configuration of the S2[MSBF], S2[RXINV], and C3[TXINV] bits.

Workaround: Use software to manually detect initial characters. Configure the UART with S2[MSBF] and S2[RXINV] cleared. Then check UART receive characters looking for 0x3B or 0x03. If 0x3B is received, then the connected card is direct convention. If 0x03 is received, then the connected card is inverse convention. If an inverse convention card is detected, then software should set S2[MSBF], S2[RXINV], and C3[TXINV].

e5928: USBOTG: USBx_USBTRC0[USBRESET] bit does not operate as expected in all cases

Errata type: Errata

Description: The USBx_USBTCR0[USBRESET] bit is not properly synchronized. In some cases using the bit can cause the USB module to enter an undefined state.

Workaround: Do not use the USBx_USBTCR0[USBRESET] bit. If USB registers need to be written to their reset states, then write those registers manually instead of using the module reset bit.

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.

© 2014 Freescale Semiconductor, Inc.

